人们需要为2020年的六个商业智能趋势做好准备

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 对于2020年商业智能发展趋势有何期待?而人们需要为这些发展趋势做好准备。越来越多的企业使用数据来驱动他们的决策——这使得前沿分析和商业智能战略成为企业可以拥有的最佳优势之一。新兴技术(特别是由人工智能驱动的技术)正在改变企业从数据收集和提取可用见解的方式。

对于2020年商业智能发展趋势有何期待?而人们需要为这些发展趋势做好准备。

越来越多的企业使用数据来驱动他们的决策——这使得前沿分析和商业智能战略成为企业可以拥有的最佳优势之一。

新兴技术(特别是由人工智能驱动的技术)正在改变企业从数据收集和提取可用见解的方式。

人们应该了解以下六个趋势,这些趋势将在2020年和未来10年中重塑商业智能领域。

1.数据发现的新途径

像物联网(IoT)设备这样的新数据收集技术正在为企业提供大量的实时数据,这与以前收集的任何数据都不一样。人工智能和数据投资者Matt Turck表示,“一切皆可数据化”,随着越来越多的人员上网,可以将信息进行分析、分类并将其转换为一种格式,而人工智能系统可能会崩溃。

这些新的数据发现途径将为商业智能分析师提供比以往更多的数据来源。与此同时,处理大量数据的公司将需要开始更加认真地对待数据安全性和隐私权,尤其是在处理机密的消费者信息时。正如企业越来越意识到数据的价值一样,黑客也越来越意识到这一点,因此,数据泄露的频率和成本也开始飙升。

依赖这些新数据源的公司也需要保护这些新数据,否则将面临难以承受的后果。

2.人工智能驱动的大数据技术

大数据技术使数据分析人员能够处理大量的数据,这比分析人员在没有先进人工智能技术的帮助下所能处理的数据都要多。

随着新技术收集的数据量的增加,商业智能分析师可能会发现无法筛选他们收集的数据量。相反,他们将采用大数据技术来帮助他们处理和分析这些数据。

3.预测性业务分析

这些新工具中的一些使用人工智能来预测事件,通过使用预测分析来识别即使看起来不相关的变量之间的微妙关系,从而更准确地预测事件。预测分析是使用数据和人工智能算法,帮助分析师预测未来,并更好地预测业务成果。

人工智能驱动的商业智能工具可以使用预测分析和历史商业数据来预测市场需求的变化、紧急风险和企业需要应对的其他变化。

尽管传统的商业智能通常侧重于处理数据以优化当前流程并减少浪费,但通过预测分析,商业智能分析师可以帮助企业应对未来的工作流和业务流程。

4.自然语言处理和报告生成

新的人工智能工具还可以帮助企业更好地收集和分析基于文本的数据,并帮助商业智能分析师创建报告。

自然语言处理或会话分析应用于商业智能时是一种人工智能技术,可以训练计算机软件以模拟人类阅读方式的方式来处理语言。自然语言处理使人工智能驱动的技术可以更灵活、更智能地响应语言,这过去在基于软件的解决方案中提出了一个重大问题。

一些主要的商业智能平台(例如微软公司的Power BI和Tableau)已经集成了自然语言处理功能,例如语义搜索。

遗留数据系统给人工智能商业智能带来的最重大挑战之一是,需要多久可以隔离关键信息或以抵制机器阅读的格式存储关键信息。

在大多数此类情况下,分析人员将需要执行繁琐的工作,即遍历成百上千个单独的文档来收集他们所需的特定数据点。自然语言处理可以通过智能地从大量文本文档中提取数据来为这一挑战提供答案。

5. 商业智能分析师日益短缺

与其他一些技术和STEM领域一样,商业智能和数据分析也面临着越来越缺乏高技能分析师的问题。目前还没有迹象表明这种趋势会逆转——随着基于人工智能的技术越来越广泛地被采用,越来越多的企业转向人工智能驱动的数据收集和商业智能,这种短缺情况甚至可能变得更严重。

很难说更好的教育计划是否可以改善这种情况。许多专家认为,目前的商业智能和数据分析教育项目并没有有效地训练员工使用人工智能程序和其他现代商业智能技术。

同时,这些商业智能职位的许多空缺都需要在该领域拥有多年经验和高技能水平的工作人员。通常,初出校门不久的大学毕业生不适合担任这些职位。

企业可能需要为缺乏能够使用人工智能和大数据的业务分析师和数据科学家做准备。

6. 通用人工智能工具

从好的方面来说,技术行业也可能有提供一个人工智能驱动的解决方案,以解决日益迫在眉睫的商业智能人才短缺问题。

许多商业智能平台和工具都整合了为普通用户设计的人工智能功能——即使是没有人工智能工作经验或数据分析背景的分析师和管理人员也应该能够使用它们。这些更智能的工具可以提高企业智商,可能会导致更高的销售额和更好的现金流。

这些新工具还可以帮助提高数据收集和报告生成的速度,并允许任何有权访问该软件的人发现可以推动业务决策的新见解和数据点。

2020年商业智能将如何变化

正如某些人所说,这并不是一种新的石油,但是数据几乎可以肯定是企业可以拥有的最有价值的商品之一。

采用人工智能分析技术不太可能取代商业智能分析师。与其相反,它更有可能通过自动化繁琐的数据收集过程和允许管理层和团队成员在没有正式数据培训的情况下回答简单问题,从而为这些分析师腾出时间。

在未来,数据将可能成为商业智能的核心。大多数新技术将以某种方式依赖人工智能。商业智能分析师需要熟悉人工智能工具,否则可能无法使用最新和最前沿的商业智能工具。

与此同时,企业需要为缺乏经过数据培训的具有才华的商业智能分析师和管理人员做好准备。

版权声明:本文为企业网D1Net编译,转载需注明出处为:企业网D1Net,如果不注明出处,企业网D1Net将保留追究其法律责任的权利。

原文发布时间:2019-12-03
本文作者:责任编辑:cres 作者:Kayla Matthews
本文来自阿里云云栖号&云栖社区合作伙伴“企业网D1Net”,了解相关信息可以关注“企业网D1Net

相关文章
|
4月前
|
人工智能 数据挖掘 大数据
如何做好舆情大数据分析工作
舆情大数据分析是一项复杂而系统的工作,它涉及舆情监测、数据汇总和过滤分类、数据分析、结果呈现与报告撰写以及反馈等多个工作流程。因此,对于政企单位来说,如何做好舆情大数据分析工作是个难题。下面,本文就来详细为各位阐述舆情大数据分析工作内容以及如何做好舆情大数据分析工作?
127 4
|
5月前
|
数据挖掘 测试技术
产品运营方法论问题之运营过程中持续的数据分析如何解决
产品运营方法论问题之运营过程中持续的数据分析如何解决
|
6月前
|
传感器 人工智能 搜索推荐
每个人都必须为2024年的十大商业趋势做好准备
每个人都必须为2024年的十大商业趋势做好准备
|
7月前
|
数据采集 数据可视化 数据挖掘
知识分享-商业数据分析业务全流程
知识分享-商业数据分析业务全流程
111 1
|
开发者
《中国开发者画像洞察报告2022》——02 开发者面临的挑战——2.3新形势
《中国开发者画像洞察报告2022》——02 开发者面临的挑战——2.3新形势
|
数据采集 数据挖掘 定位技术
【业务数据分析】——如何搭建数据指标体系
【业务数据分析】——如何搭建数据指标体系
768 0
|
存储 SQL 数据可视化
没有好的数据可视化分析工具,如何做好数据洞察,如何助力企业数据化转型
随着企业信息化建设程度不断加强,随之而来的企业经营数据呈爆发式增长,传统粗放 式的管理手段难以支撑现代化企业发展需要,越来越多的企业开始意识到数据的重要性,希 望通过大数据分析来驱动来实现企业智慧化运营,提升企业业务增长。 然而各行各业的企业在实践数据化运营的道路上面临着巨大的挑战,通过与大量企业进 行沟通,交流我们将企业面临的问题归纳整理为如下几点信息:
没有好的数据可视化分析工具,如何做好数据洞察,如何助力企业数据化转型
|
数据采集 分布式计算 Hadoop
2018年,从商业智能中获得更多价值的九种方式
对于太多的组织来说,“商业智能”让人想到古板,陈旧的报告里的简单的统计摘要。
184 0
2018年,从商业智能中获得更多价值的九种方式
|
机器学习/深度学习 数据可视化 数据挖掘
2021年应该为十大商业智能趋势做好准备
在过去的20年中,商业智能在很多方面都发生了革命性的变化。由于很多组织都在采用这项技术,商业智能的一些趋势预计将在未来一年中发生变化。
146 0
|
前端开发 数据挖掘 BI
创业公司如何做数据分析(二)运营数据系统
作为系列文章的第二篇,本文将首先来探讨应用层中的运营数据系统,因为运营数据几乎是所有互联网创业公司开始做数据的起点,也是早期数据服务的主要对象。本文将着重回顾下我们做了哪些工作、遇到过哪些问题、如何解决并实现了相应的功能。
5866 0