一天学会PostgreSQL应用开发与管理 - 3 访问数据

本文涉及的产品
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云数据库 RDS SQL Server,基础系列 2核4GB
简介:

背景

在线SQL平台

http://www.sqlfiddle.com/

本章大纲

1. 使用PSQL

2. 使用Select语句

3. 使用游标

4. 行表达式

5. with和递归查询

6. 执行DML\DDL\DCL

7. 选择行

8. 使用序列

9. 使用默认值

10. 生成数据

11. 检查空值(NULL)

12. 时间和日期

13. 多个表协同工作

第一章 : 访问数据

1. 使用PSQL

psql 是PostgreSQL软件包中的命令行工具,可以连接数据库,执行SQL。

psql 详细用法参考

psql --help  
  
or  
  
man psql  

psql的选项

psql --help  
psql is the PostgreSQL interactive terminal.  
  
Usage:  
  psql [OPTION]... [DBNAME [USERNAME]]  
  
General options:  
  -c, --command=COMMAND    run only single command (SQL or internal) and exit  
  -d, --dbname=DBNAME      database name to connect to (default: "postgres")  
  -f, --file=FILENAME      execute commands from file, then exit  
  -l, --list               list available databases, then exit  
  -v, --set=, --variable=NAME=VALUE  
                           set psql variable NAME to VALUE  
                           (e.g., -v ON_ERROR_STOP=1)  
  -V, --version            output version information, then exit  
  -X, --no-psqlrc          do not read startup file (~/.psqlrc)  
  -1 ("one"), --single-transaction  
                           execute as a single transaction (if non-interactive)  
  -?, --help[=options]     show this help, then exit  
      --help=commands      list backslash commands, then exit  
      --help=variables     list special variables, then exit  
  
Input and output options:  
  -a, --echo-all           echo all input from script  
  -b, --echo-errors        echo failed commands  
  -e, --echo-queries       echo commands sent to server  
  -E, --echo-hidden        display queries that internal commands generate  
  -L, --log-file=FILENAME  send session log to file  
  -n, --no-readline        disable enhanced command line editing (readline)  
  -o, --output=FILENAME    send query results to file (or |pipe)  
  -q, --quiet              run quietly (no messages, only query output)  
  -s, --single-step        single-step mode (confirm each query)  
  -S, --single-line        single-line mode (end of line terminates SQL command)  
  
Output format options:  
  -A, --no-align           unaligned table output mode  
  -F, --field-separator=STRING  
                           field separator for unaligned output (default: "|")  
  -H, --html               HTML table output mode  
  -P, --pset=VAR[=ARG]     set printing option VAR to ARG (see \pset command)  
  -R, --record-separator=STRING  
                           record separator for unaligned output (default: newline)  
  -t, --tuples-only        print rows only  
  -T, --table-attr=TEXT    set HTML table tag attributes (e.g., width, border)  
  -x, --expanded           turn on expanded table output  
  -z, --field-separator-zero  
                           set field separator for unaligned output to zero byte  
  -0, --record-separator-zero  
                           set record separator for unaligned output to zero byte  
  
Connection options:  
  -h, --host=HOSTNAME      database server host or socket directory (default: "127.0.0.1")  
  -p, --port=PORT          database server port (default: "1921")  
  -U, --username=USERNAME  database user name (default: "postgres")  
  -w, --no-password        never prompt for password  
  -W, --password           force password prompt (should happen automatically)  
  
For more information, type "\?" (for internal commands) or "\help" (for SQL  
commands) from within psql, or consult the psql section in the PostgreSQL  
documentation.  
  
Report bugs to <pgsql-bugs@postgresql.org>.  

使用psql连接数据库例子

psql -h 127.0.0.1 -p 1921 -U postgres -d postgres  
psql (9.6.1)  
Type "help" for help.  
  
postgres=#   

2. 使用Select语句

psql 支持输出帮助文档,例如select 子句的语法

postgres=# \h select  
Command:     SELECT  
Description: retrieve rows from a table or view  
Syntax:  
[ WITH [ RECURSIVE ] with_query [, ...] ]  
SELECT [ ALL | DISTINCT [ ON ( expression [, ...] ) ] ]  
    [ * | expression [ [ AS ] output_name ] [, ...] ]  
    [ FROM from_item [, ...] ]  
    [ WHERE condition ]  
    [ GROUP BY grouping_element [, ...] ]  
    [ HAVING condition [, ...] ]  
    [ WINDOW window_name AS ( window_definition ) [, ...] ]  
    [ { UNION | INTERSECT | EXCEPT } [ ALL | DISTINCT ] select ]  
    [ ORDER BY expression [ ASC | DESC | USING operator ] [ NULLS { FIRST | LAST } ] [, ...] ]  
    [ LIMIT { count | ALL } ]  
    [ OFFSET start [ ROW | ROWS ] ]  
    [ FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } ONLY ]  
    [ FOR { UPDATE | NO KEY UPDATE | SHARE | KEY SHARE } [ OF table_name [, ...] ] [ NOWAIT | SKIP LOCKED ] [...] ]  
  
where from_item can be one of:  
  
    [ ONLY ] table_name [ * ] [ [ AS ] alias [ ( column_alias [, ...] ) ] ]  
                [ TABLESAMPLE sampling_method ( argument [, ...] ) [ REPEATABLE ( seed ) ] ]  
    [ LATERAL ] ( select ) [ AS ] alias [ ( column_alias [, ...] ) ]  
    with_query_name [ [ AS ] alias [ ( column_alias [, ...] ) ] ]  
    [ LATERAL ] function_name ( [ argument [, ...] ] )  
                [ WITH ORDINALITY ] [ [ AS ] alias [ ( column_alias [, ...] ) ] ]  
    [ LATERAL ] function_name ( [ argument [, ...] ] ) [ AS ] alias ( column_definition [, ...] )  
    [ LATERAL ] function_name ( [ argument [, ...] ] ) AS ( column_definition [, ...] )  
    [ LATERAL ] ROWS FROM( function_name ( [ argument [, ...] ] ) [ AS ( column_definition [, ...] ) ] [, ...] )  
                [ WITH ORDINALITY ] [ [ AS ] alias [ ( column_alias [, ...] ) ] ]  
    from_item [ NATURAL ] join_type from_item [ ON join_condition | USING ( join_column [, ...] ) ]  
  
and grouping_element can be one of:  
  
    ( )  
    expression  
    ( expression [, ...] )  
    ROLLUP ( { expression | ( expression [, ...] ) } [, ...] )  
    CUBE ( { expression | ( expression [, ...] ) } [, ...] )  
    GROUPING SETS ( grouping_element [, ...] )  
  
and with_query is:  
  
    with_query_name [ ( column_name [, ...] ) ] AS ( select | values | insert | update | delete )  
  
TABLE [ ONLY ] table_name [ * ]  

目标、源 别名

postgres=# select 'nihao' as col_alias -- 列别名  
           from pg_class as t 源别名  
           limit 1;  
 col_alias   
-----------  
 nihao  
(1 row)  

select 目标

字段、函数、表达式、子查询

postgres=# select relname, -- 列名  
                  now(), -- 函数  
                  upper(relname)||'__digoal',   -- 表达式  
                  (select 1+2+3)  -- 子查询  
                  from pg_class limit 2;   
     relname     |              now              |        ?column?         | ?column?   
-----------------+-------------------------------+-------------------------+----------  
 pg_type         | 2017-04-11 15:09:45.440779+08 | PG_TYPE__digoal         |        6  
 pg_toast_187550 | 2017-04-11 15:09:45.440779+08 | PG_TOAST_187550__digoal |        6  
(2 rows)  

select 源

表、视图、物化视图、函数、表达式、子查询

select * from pg_class;  
  
select * from 视图;  
  
select * from 物化视图;  
  
select * from 函数(参数);  -- 如果函数返回的是record,需要格式化  
  
select * from 函数(参数) as t(列1 类型1, ... ,列n 类型n);  -- 如果函数返回的是record,需要格式化  
  
select 函数(参数);  
  
select 函数(参数) as t(列1 类型1, ... ,列n 类型n);  
  
select 表达式;  
  
select (子查询) as t;  

select where条件

postgres=# select relname,reltuples from pg_class where relname='pg_class';  
 relname  | reltuples   
----------+-----------  
 pg_class |       360  
(1 row)  

select 排序

postgres=# select oid,relname from pg_class order by oid limit 1;  
 oid |              relname                
-----+-----------------------------------  
 112 | pg_foreign_data_wrapper_oid_index  
(1 row)  

select 随机排序

postgres=# select oid,relname from pg_class order by random() limit 1;  
  oid  |  relname    
-------+-----------  
 13124 | sql_parts  
(1 row)  

select 分组

postgres=# select relkind,count(*) from pg_class group by relkind;  
 relkind | count   
---------+-------  
 f       |     1  
 c       |     2  
 t       |    28  
 S       |     3  
 i       |   149  
 r       |    80  
 v       |   115  
(7 rows)  

select 限制输出条数

postgres=# select relkind,count(*) from pg_class group by relkind limit 1;  
 relkind | count   
---------+-------  
 f       |     1  
(1 row)  

select 位移

postgres=# select relkind,count(*) from pg_class group by relkind order by relkind offset 1 limit 1;  
 relkind | count   
---------+-------  
 c       |     2  
(1 row)  

select 当前表以及所有继承表

postgres=# create table p(id int, info text, crt_time timestamp);  
CREATE TABLE  
postgres=# create table c1(id int, info text, crt_time timestamp) inherits(p);  
NOTICE:  merging column "id" with inherited definition  
NOTICE:  merging column "info" with inherited definition  
NOTICE:  merging column "crt_time" with inherited definition  
CREATE TABLE  
postgres=# create table c2(id int, info text, crt_time timestamp) inherits(p);  
NOTICE:  merging column "id" with inherited definition  
NOTICE:  merging column "info" with inherited definition  
NOTICE:  merging column "crt_time" with inherited definition  
CREATE TABLE  
postgres=# create table cc1(id int, info text, crt_time timestamp) inherits(c1);  
NOTICE:  merging column "id" with inherited definition  
NOTICE:  merging column "info" with inherited definition  
NOTICE:  merging column "crt_time" with inherited definition  
CREATE TABLE  
postgres=# insert into p values (1,'p',now());  
INSERT 0 1  
postgres=# insert into c1 values (1,'c1',now());  
INSERT 0 1  
postgres=# insert into c2 values (1,'c2',now());  
INSERT 0 1  
postgres=# insert into cc1 values (1,'cc1',now());  
INSERT 0 1  
postgres=# select * from p;  
 id | info |          crt_time            
----+------+----------------------------  
  1 | p    | 2017-04-11 15:37:01.157824  
  1 | c1   | 2017-04-11 15:37:05.635794  
  1 | c2   | 2017-04-11 15:37:11.271823  
  1 | cc1  | 2017-04-11 15:37:16.177828  
(4 rows)  
  
postgres=# select tableoid::regclass,* from p;  
 tableoid | id | info |          crt_time            
----------+----+------+----------------------------  
 p        |  1 | p    | 2017-04-11 15:37:01.157824  
 c1       |  1 | c1   | 2017-04-11 15:37:05.635794  
 c2       |  1 | c2   | 2017-04-11 15:37:11.271823  
 cc1      |  1 | cc1  | 2017-04-11 15:37:16.177828  
(4 rows)  

select 当前表

postgres=# select tableoid::regclass,* from  only p;  
 tableoid | id | info |          crt_time            
----------+----+------+----------------------------  
 p        |  1 | p    | 2017-04-11 15:37:01.157824  
(1 row)  
  
postgres=# select tableoid::regclass,* from  only c1;  
 tableoid | id | info |          crt_time            
----------+----+------+----------------------------  
 c1       |  1 | c1   | 2017-04-11 15:37:05.635794  
(1 row)  

3. 使用游标

创建游标

postgres=# begin;  
BEGIN  
postgres=# \h declare  
Command:     DECLARE  
Description: define a cursor  
Syntax:  
DECLARE name [ BINARY ] [ INSENSITIVE ] [ [ NO ] SCROLL ]  
    CURSOR [ { WITH | WITHOUT } HOLD ] FOR query  
  
postgres=# declare cur1 cursor for select oid,relname,relkind from pg_class;  
DECLARE CURSOR  

fetch 游标

postgres=# \h fetch  
Command:     FETCH  
Description: retrieve rows from a query using a cursor  
Syntax:  
FETCH [ direction [ FROM | IN ] ] cursor_name  
  
where direction can be empty or one of:  
  
    NEXT  
    PRIOR  
    FIRST  
    LAST  
    ABSOLUTE count  
    RELATIVE count  
    count  
    ALL  
    FORWARD  
    FORWARD count  
    FORWARD ALL  
    BACKWARD  
    BACKWARD count  
    BACKWARD ALL  
  
postgres=# fetch 2 from cur1;  
  oid   |     relname     | relkind   
--------+-----------------+---------  
   1247 | pg_type         | r  
 187553 | pg_toast_187550 | t  
(2 rows)  

关闭游标

postgres=# \h close  
Command:     CLOSE  
Description: close a cursor  
Syntax:  
CLOSE { name | ALL }  
  
postgres=# close cur1;  
CLOSE CURSOR  

4. 行表达式

行表达式

postgres=# select * from (values(1,'test1'),(2,'test2'),(3,'test3')) as t(id, info);  
 id | info    
----+-------  
  1 | test1  
  2 | test2  
  3 | test3  
(3 rows)  

5. with和递归查询

with语句

postgres=# with   
a as (select * from (values(1,'test1'),(2,'test2'),(3,'test3')) as t(id, info)),  
b as (select oid,relname,relkind from pg_class)   
select a.*,b.* from a,b where a.id=mod(b.oid::int,3)+1;  
  
 id | info  |  oid   |                    relname                    | relkind   
----+-------+--------+-----------------------------------------------+---------  
  3 | test3 |   1247 | pg_type                                       | r  
  3 | test3 | 187553 | pg_toast_187550                               | t  
  3 | test3 | 186725 | new_type                                      | c  
  2 | test2 | 187555 | pg_toast_187550_index                         | i  
  3 | test3 | 187550 | test                                          | r  
  3 | test3 | 187559 | pg_toast_187556                               | t  
  2 | test2 | 187561 | pg_toast_187556_index                         | i  

递归语句

pic

pic

例子

pic

postgres=# with recursive a as (select * from (values (1,2),(2,3),(3,4),(4,100),(2,101),(101,104),(3,102),(4,103),(103,105)) as t(id1,id2)),   
tmp as (  
select * from a where id2=105  
union all  
select a.* from a join tmp on (a.id2=tmp.id1)  
)  
select * from tmp;  
 id1 | id2   
-----+-----  
 103 | 105  
   4 | 103  
   3 |   4  
   2 |   3  
   1 |   2  
(5 rows)  

6. 执行DML\DDL\DCL

插入

postgres=# create table tbl1(id int, info text, crt_time timestamp);  
CREATE TABLE  
postgres=# insert into tbl1 (id,info,crt_time) values (1,'test',now());  
INSERT 0 1  
postgres=# select * from tbl1;  
 id | info |          crt_time            
----+------+----------------------------  
  1 | test | 2017-04-11 15:30:38.810826  
(1 row)  

批量插入1

postgres=# insert into tbl1 (id, info ,crt_time) select generate_series(1,10000),'test',now();  
INSERT 0 10000  
postgres=# select count(*) from tbl1;  
 count   
-------  
 10001  
(1 row)  

批量插入2

postgres=# insert into tbl1 (id,info,crt_time) values (1,'test',now()), (2,'test2',now()), (3,'test3',now());  
INSERT 0 3  

批量插入3

postgres=# begin;  
BEGIN  
postgres=# insert into tbl1 (id,info,crt_time) values (1,'test',now());  
INSERT 0 1  
postgres=# insert into tbl1 (id,info,crt_time) values (2,'test2',now());  
INSERT 0 1  
postgres=# insert into tbl1 (id,info,crt_time) values (3,'test3',now());  
INSERT 0 1  
postgres=# end;  
COMMIT  

更新

postgres=# update tbl1 set info='new value' where id=1;  
UPDATE 4  

有则更新、无则插入

postgres=# create table tbl2(id int primary key, info text, crt_time timestamp);  
CREATE TABLE  
postgres=# insert into tbl2 select generate_series(1,1000),'test',now() on conflict  (id) do update set info=excluded.info, crt_time=excluded.crt_time;  
INSERT 0 1000  
postgres=# insert into tbl2 select generate_series(1,1000),'test',now() on conflict  (id) do update set info=excluded.info, crt_time=excluded.crt_time;  
INSERT 0 1000  
postgres=# insert into tbl2 select generate_series(1,1000),'test',now() on conflict  (id) do nothing;  
INSERT 0 0  

删除数据

postgres=# delete from tbl1 where id=1;  
DELETE 4  

truncate(如果要清除全表,建议使用truncate)

注意,请使用DDL锁超时,如果有继承表,并且只想清理当前表,使用ONLY.

建议所有的DDL操作前,都设置锁超时,避免堵塞其他操作。

postgres=# \h truncate  
Command:     TRUNCATE  
Description: empty a table or set of tables  
Syntax:  
TRUNCATE [ TABLE ] [ ONLY ] name [ * ] [, ... ]  
    [ RESTART IDENTITY | CONTINUE IDENTITY ] [ CASCADE | RESTRICT ]  
  
postgres=# set lock_timeout = '1s';  -- 设置锁超时  
SET  
postgres=# truncate only tbl1;  -- 清理当前表(不清理继承表)  
TRUNCATE TABLE  

drop表

drop表时,如果有依赖对象,想一同删除,可以使用cascade关键字

postgres=# drop table p;  
ERROR:  cannot drop table p because other objects depend on it  
DETAIL:  table c1 depends on table p  
table cc1 depends on table c1  
table c2 depends on table p  
HINT:  Use DROP ... CASCADE to drop the dependent objects too.  
postgres=# drop table p cascade;  
NOTICE:  drop cascades to 3 other objects  
DETAIL:  drop cascades to table c1  
drop cascades to table cc1  
drop cascades to table c2  
DROP TABLE  

alter table修改表

例如添加字段

postgres=# alter table tbl1 add column c1 int;  
ALTER TABLE  

添加字段,并添加默认值(会rewrite table, 不建议对大表这么操作,会很久。大表增加字段和默认值,建议先增加自动,默认值可以异步小批量的UPDATE)

postgres=# alter table tbl1 add column c2 int default 100;  
ALTER TABLE  

转换兼容类型

postgres=# alter table tbl1 alter column c2 type int2;  
ALTER TABLE  

转换不兼容类型

postgres=# create table tbl2(id int, info text, crt_time timestamp);  
CREATE TABLE  
postgres=# insert into tbl2 values (1,'1', now());  
INSERT 0 1  
postgres=# insert into tbl2 values (2,'2a', now());  
INSERT 0 1  
  
postgres=# select to_number(info,'9999999999999999999') from tbl2;  
 to_number   
-----------  
         1  
         2  
(2 rows)  
  
postgres=# alter table tbl2 alter column info type int using to_number(info,'9999999999999999999');  
ALTER TABLE  

psql服务端COPY(文件读写在数据库所在服务器)

postgres=# \h copy  
Command:     COPY  
Description: copy data between a file and a table  
Syntax:  
COPY table_name [ ( column_name [, ...] ) ]  
    FROM { 'filename' | PROGRAM 'command' | STDIN }  
    [ [ WITH ] ( option [, ...] ) ]  
  
COPY { table_name [ ( column_name [, ...] ) ] | ( query ) }  
    TO { 'filename' | PROGRAM 'command' | STDOUT }  
    [ [ WITH ] ( option [, ...] ) ]  
  
where option can be one of:  
  
    FORMAT format_name  
    OIDS [ boolean ]  
    FREEZE [ boolean ]  
    DELIMITER 'delimiter_character'  
    NULL 'null_string'  
    HEADER [ boolean ]  
    QUOTE 'quote_character'  
    ESCAPE 'escape_character'  
    FORCE_QUOTE { ( column_name [, ...] ) | * }  
    FORCE_NOT_NULL ( column_name [, ...] )  
    FORCE_NULL ( column_name [, ...] )  
    ENCODING 'encoding_name'  

COPY out

postgres=# copy tbl2 to '/tmp/test.csv';  
COPY 2  

COPY in

postgres=# copy tbl2 from '/tmp/test.csv';  
COPY 2  

psql客户端COPY(文件读写在客户端)

COPY in

 cat /tmp/test.csv | psql -h 127.0.0.1 -p 1921 -U postgres -d postgres -c "copy tbl2 from stdin"  
COPY 2  

COPY out

psql -h 127.0.0.1 -p 1921 -U postgres -d postgres -c "copy tbl2 to stdout" > /tmp/test.csv  
  
cat /tmp/test.csv  
1       1       2017-04-11 15:48:39.728835  
2       2       2017-04-11 15:48:44.370834  
1       1       2017-04-11 15:48:39.728835  
2       2       2017-04-11 15:48:44.370834  
1       1       2017-04-11 15:48:39.728835  
2       2       2017-04-11 15:48:44.370834  

软件开发时请使用程序语言对应的驱动接口。

7. 选择行

where子句过滤条件

postgres=# select tableoid::regclass,xmin,xmax,cmin,cmax,ctid,relname from pg_class where relname='pg_type';  
 tableoid |   xmin   | xmax | cmin | cmax | ctid  | relname   
----------+----------+------+------+------+-------+---------  
 pg_class | 94858157 |    0 |    1 |    1 | (0,3) | pg_type  
(1 row)  

隐藏字段(表oid, 插入事务号, 删除事务号, 事务命令偏移值, 行号)

postgres=# select tableoid::regclass,xmin,xmax,cmin,cmax,ctid,relname from pg_class limit 10;  
 tableoid |   xmin   | xmax | cmin | cmax |  ctid  |        relname          
----------+----------+------+------+------+--------+-----------------------  
 pg_class | 94858157 |    0 |    1 |    1 | (0,3)  | pg_type  
 pg_class | 94858326 |    0 |    1 |    1 | (0,4)  | pg_toast_187550  
 pg_class | 94858205 |    0 |  232 |  232 | (0,5)  | new_type  
 pg_class | 94858326 |    0 |    2 |    2 | (0,6)  | pg_toast_187550_index  
 pg_class | 94858326 |    0 |    4 |    4 | (0,7)  | test  
 pg_class | 95516401 |    0 |    1 |    1 | (0,9)  | pg_toast_187556  
 pg_class | 95516401 |    0 |    2 |    2 | (0,10) | pg_toast_187556_index  
 pg_class | 95516401 |    0 |    4 |    4 | (0,11) | tblaccount4  
 pg_class |     1726 |    0 |    2 |    2 | (0,20) | hints_id_seq  
 pg_class |     1726 |    0 |    5 |    5 | (0,22) | pg_toast_17134  
(10 rows)  

8. 使用序列

PostgreSQL允许创建多个序列,每个序列独立自主,有自己的取值空间。

序列一旦消耗掉,就无法回退,除非设置它。

序列通常用来表示唯一自增值。

创建序列

postgres=# \h create sequence  
Command:     CREATE SEQUENCE  
Description: define a new sequence generator  
Syntax:  
CREATE [ TEMPORARY | TEMP ] SEQUENCE [ IF NOT EXISTS ] name [ INCREMENT [ BY ] increment ]  
    [ MINVALUE minvalue | NO MINVALUE ] [ MAXVALUE maxvalue | NO MAXVALUE ]  
    [ START [ WITH ] start ] [ CACHE cache ] [ [ NO ] CYCLE ]  
    [ OWNED BY { table_name.column_name | NONE } ]  
  
postgres=# create sequence seq;  
CREATE SEQUENCE  

获取序列值

postgres=# select nextval('seq'::regclass);  
 nextval   
---------  
       1  
(1 row)  
  
postgres=# select nextval('seq'::regclass);  
 nextval   
---------  
       2  
(1 row)  

读取序列当前状态

postgres=# select * from seq;  
 sequence_name | last_value | start_value | increment_by |      max_value      | min_value | cache_value | log_cnt | is_cycled | is_called   
---------------+------------+-------------+--------------+---------------------+-----------+-------------+---------+-----------+-----------  
 seq           |          2 |           1 |            1 | 9223372036854775807 |         1 |           1 |      31 | f         | t  
(1 row)  

读取当前会话,上一次获取的序列值

postgres=# select * from currval('seq'::regclass);  
 currval   
---------  
       2  
(1 row)  

设置序列起始值

postgres=# \h alter sequence  
Command:     ALTER SEQUENCE  
Description: change the definition of a sequence generator  
Syntax:  
ALTER SEQUENCE [ IF EXISTS ] name [ INCREMENT [ BY ] increment ]  
    [ MINVALUE minvalue | NO MINVALUE ] [ MAXVALUE maxvalue | NO MAXVALUE ]  
    [ START [ WITH ] start ]  
    [ RESTART [ [ WITH ] restart ] ]  
    [ CACHE cache ] [ [ NO ] CYCLE ]  
    [ OWNED BY { table_name.column_name | NONE } ]  
  
postgres=# alter sequence seq restart with 1;  
ALTER SEQUENCE  
postgres=# select nextval('seq'::regclass);  
 nextval   
---------  
       1  
(1 row)  

设置序列是否轮回

postgres=# alter sequence seq cycle;  
ALTER SEQUENCE  

设置序列的cache值,提升性能,每个会话,一次会获取一个CACHE的VALUE。

postgres=# alter sequence seq cache 10000;  
ALTER SEQUENCE  

设置序列的步调

postgres=# alter sequence seq increment by 99;  
ALTER SEQUENCE  
postgres=# select nextval('seq'::regclass);  
 nextval   
---------  
     100  
(1 row)  
  
postgres=# select nextval('seq'::regclass);  
 nextval   
---------  
     199  
(1 row)  

修改序列的nextval(与restart效果一样)

postgres=# select setval('seq'::regclass, 1);  
 setval   
--------  
      1  
(1 row)  
  
postgres=# select nextval('seq'::regclass);  
 nextval   
---------  
     100  
(1 row)  
  
postgres=# select nextval('seq'::regclass);  
 nextval   
---------  
     199  
(1 row)  

serial2,serial4,serial8类型

这三个类型,对应int2,int4,int8,同时会自动创建序列,并将默认值设置为序列值。

postgres=# create table tbl3(id serial2);  
CREATE TABLE  
postgres=# \d+ tbl3  
                                             Table "public.tbl3"  
 Column |   Type   |                     Modifiers                     | Storage | Stats target | Description   
--------+----------+---------------------------------------------------+---------+--------------+-------------  
 id     | smallint | not null default nextval('tbl3_id_seq'::regclass) | plain   |              |   

9. 使用默认值

postgres=# create table tbl4(id int, info text, crt_time timestamp default now());  
CREATE TABLE  
  
postgres=# insert into tbl4 (id, info) values (1,'test');  
INSERT 0 1  
postgres=# select * from tbl4;  
 id | info |          crt_time            
----+------+----------------------------  
  1 | test | 2017-04-11 16:08:12.232796  
(1 row)  

10. 生成数据

PostgreSQL 的函数支持返回多条记录,使用这种方法可以很方便的生成测试数据。

postgres=# \df generate_series  
                                                               List of functions  
   Schema   |      Name       |         Result data type          |                        Argument data types                         |  Type    
------------+-----------------+-----------------------------------+--------------------------------------------------------------------+--------  
 pg_catalog | generate_series | SETOF bigint                      | bigint, bigint                                                     | normal  
 pg_catalog | generate_series | SETOF bigint                      | bigint, bigint, bigint                                             | normal  
 pg_catalog | generate_series | SETOF integer                     | integer, integer                                                   | normal  
 pg_catalog | generate_series | SETOF integer                     | integer, integer, integer                                          | normal  
 pg_catalog | generate_series | SETOF numeric                     | numeric, numeric                                                   | normal  
 pg_catalog | generate_series | SETOF numeric                     | numeric, numeric, numeric                                          | normal  
 pg_catalog | generate_series | SETOF timestamp with time zone    | timestamp with time zone, timestamp with time zone, interval       | normal  
 pg_catalog | generate_series | SETOF timestamp without time zone | timestamp without time zone, timestamp without time zone, interval | normal  
(8 rows)  

插入1万条测试数据

postgres=# create table tbl5(id int, info text, crt_time timestamp);  
CREATE TABLE  
postgres=# insert into tbl5 select id, md5(random()::text), clock_timestamp() from generate_series(1,10000) t(id);  
INSERT 0 10000  
postgres=# select * from tbl5 limit 10;  
 id |               info               |          crt_time            
----+----------------------------------+----------------------------  
  1 | 1b9e90de0b1236339503a9a79b13dd55 | 2017-04-11 16:11:07.106191  
  2 | c43a151d1a7df9d587488ca5ac4df7c3 | 2017-04-11 16:11:07.106326  
  3 | 789ec7d6feb1cdac55f252cc17ef8bf1 | 2017-04-11 16:11:07.106335  
  4 | 1c229df1e6b2aa344bee239b91b9c1af | 2017-04-11 16:11:07.10634  
  5 | 88d95fc422a28361292201dc7f648a54 | 2017-04-11 16:11:07.106345  
  6 | 3f8f88d9a69fdd92062a8bd9e49e5a6a | 2017-04-11 16:11:07.10635  
  7 | b66c5c9b46eef16e28e9d909442cb675 | 2017-04-11 16:11:07.106355  
  8 | 2a28d6a7b760821d826d6fc4891fa167 | 2017-04-11 16:11:07.106361  
  9 | 3fd0ec10c7068b83646b1920e4f97319 | 2017-04-11 16:11:07.106366  
 10 | d0544855ee8f926c5e5ee821e3932344 | 2017-04-11 16:11:07.106371  
(10 rows)  

其他生产数据的方法

pgbench 压测生成tpc-B测试数据

pgbench -i -s 10  
NOTICE:  table "pgbench_history" does not exist, skipping  
NOTICE:  table "pgbench_tellers" does not exist, skipping  
NOTICE:  table "pgbench_accounts" does not exist, skipping  
NOTICE:  table "pgbench_branches" does not exist, skipping  
creating tables...  
100000 of 1000000 tuples (10%) done (elapsed 0.08 s, remaining 0.74 s)  
200000 of 1000000 tuples (20%) done (elapsed 0.19 s, remaining 0.75 s)  
300000 of 1000000 tuples (30%) done (elapsed 0.30 s, remaining 0.69 s)  
400000 of 1000000 tuples (40%) done (elapsed 0.41 s, remaining 0.61 s)  
500000 of 1000000 tuples (50%) done (elapsed 0.51 s, remaining 0.51 s)  
600000 of 1000000 tuples (60%) done (elapsed 0.62 s, remaining 0.41 s)  
700000 of 1000000 tuples (70%) done (elapsed 0.72 s, remaining 0.31 s)  
800000 of 1000000 tuples (80%) done (elapsed 0.84 s, remaining 0.21 s)  
900000 of 1000000 tuples (90%) done (elapsed 0.95 s, remaining 0.11 s)  
1000000 of 1000000 tuples (100%) done (elapsed 1.06 s, remaining 0.00 s)  
vacuum...  
set primary keys...  
done.  

pgbench 压测, 使用脚本生成测试数据

postgres=# create table tbl6(id int ,info text, crt_time timestamp);  
CREATE TABLE  
  
vi test.sql  
\set id random(1,10000000)  
insert into tbl6 values (:id, md5(random()::text), now());  
  
pgbench -M prepared -n -r -f ./test.sql -P 1 -c 32 -j 32 -t 1000  
transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 32  
number of threads: 32  
number of transactions per client: 1000  
number of transactions actually processed: 32000/32000  
latency average = 0.111 ms  
latency stddev = 0.355 ms  
tps = 257806.709420 (including connections establishing)  
tps = 265264.082829 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.001  \set id random(1,10000000)  
         0.111  insert into tbl6 values (:id, md5(random()::text), now());  

do 编程

postgres=# do language plpgsql $$  
declare  
begin  
  for i in 1..100 loop  
    insert into tbl6 select mod(id,i), md5(random()::text), clock_timestamp() from generate_series(1,1000) t(id);  
  end loop;  
end;  
$$;  
DO  

plpgsql 编程

create or replace function func_test() returns void as $$  
declare  
begin  
...  
end;  
$$ language plpgsql strict;  

11. 检查空值(NULL)

判断空值

is null

postgres=# select 1 where null is null;  
 ?column?   
----------  
        1  
(1 row)  

is not null

postgres=# select 1 where null is not null;  
 ?column?   
----------  
(0 rows)  
  
postgres=# select 1 where 'a' is not null;  
 ?column?   
----------  
        1  
(1 row)  

is distinct from null

postgres=# select 1 where 'a' is distinct from null;  
 ?column?   
----------  
        1  
(1 row)  
  
postgres=# select 1 where null is distinct from null;  
 ?column?   
----------  
(0 rows)  
  
postgres=# select 1 where null is not distinct from null;  
 ?column?   
----------  
        1  
(1 row)  

is distinct from 或 is not distinct from 可以用于两张表的JOIN,如果希望NULL与NULL相连,可以使用is not distinct from

postgres=# select 1 where 'a'='a';  
 ?column?   
----------  
        1  
(1 row)  
postgres=# select 1 where 'a' is not distinct from 'a';  
 ?column?   
----------  
        1  
(1 row)  
  
  
postgres=# select 1 where null=null;  -- 无法关联  
 ?column?   
----------  
(0 rows)  
  
postgres=# select 1 where null is not distinct from null;  -- 可以关联  
 ?column?   
----------  
        1  
(1 row)  

修正空值

postgres=# select coalesce(null,'a');  
 coalesce   
----------  
 a  
(1 row)  
  
postgres=# select coalesce(null,'a','b');  
 coalesce   
----------  
 a  
(1 row)  
  
postgres=# select coalesce(null,null,'b');  
 coalesce   
----------  
 b  
(1 row)  

12. 时间和日期

当前日期

postgres=# select current_date;  
    date      
------------  
 2017-04-11  
(1 row)  

事务时间

postgres=# select current_time;  
       timetz         
--------------------  
 16:25:53.179793+08  
(1 row)  

事务timestamp

postgres=# select now();  
              now                
-------------------------------  
 2017-04-11 16:25:53.179793+08  
(1 row)  

语句时间

postgres=# select clock_timestamp()::time;  
 clock_timestamp   
-----------------  
 16:26:57.251972  
(1 row)  
  
postgres=# select statement_timestamp()::time;  
 statement_timestamp   
---------------------  
 16:27:02.886793  
(1 row)  
  
postgres=# select statement_timestamp()::timetz;  
 statement_timestamp   
---------------------  
 16:27:06.975794+08  
(1 row)  
  
postgres=# select clock_timestamp()::timetz;  
  clock_timestamp     
--------------------  
 16:27:10.199891+08  
(1 row)  
  

语句timestamp

postgres=# select statement_timestamp();  
      statement_timestamp        
-------------------------------  
 2017-04-11 16:26:42.905786+08  
(1 row)  
  
postgres=# select clock_timestamp();  
        clock_timestamp          
-------------------------------  
 2017-04-11 16:26:47.695877+08  
(1 row)  

提取时间中的信息

https://www.postgresql.org/docs/9.6/static/functions-datetime.html

unix epoch time

postgres=# select extract(epoch from now());  
    date_part       
------------------  
 1491899255.64279  
(1 row)  

postgres=# SELECT EXTRACT(YEAR from now());  
 date_part   
-----------  
      2017  
(1 row)  

postgres=# SELECT EXTRACT(month from now());  
 date_part   
-----------  
         4  
(1 row)  

一年中的第几日

postgres=# SELECT EXTRACT(doy from now());  
 date_part   
-----------  
       101  
(1 row)  

一年中的第几周

postgres=# SELECT EXTRACT(week from now());  
 date_part   
-----------  
        15  
(1 row)  

一月中的第几日

postgres=# SELECT EXTRACT(day from now());  
 date_part   
-----------  
        11  
(1 row)  

一周中的第几日

postgres=# SELECT EXTRACT(dow from now());  
 date_part   
-----------  
         2  
(1 row)  

13. 多个表协同工作

子查询

只能返回一列  
postgres=# select (select * from (values (1,2),(2,3)) as t(c1,c2)) , relname, relkind from pg_class;  
ERROR:  subquery must return only one column  
LINE 1: select (select * from (values (1,2),(2,3)) as t(c1,c2)) , re...  
               ^  
只能返回一条记录  
postgres=# select (select * from (values (1),(2)) as t(c1)) , relname, relkind from pg_class;  
ERROR:  more than one row returned by a subquery used as an expression  
  
postgres=# select (select * from (values (1),(2)) as t(c1) limit 1) , relname, relkind from pg_class;  
 c1 |                    relname                    | relkind   
----+-----------------------------------------------+---------  
  1 | pg_type                                       | r  
  1 | pg_toast_187550                               | t  
  1 | new_type                                      | c  
  1 | pg_toast_187550_index                         | i  
  1 | test                                          | r  
  1 | pg_toast_187556                               | t  
  
postgres=# select t.relname from (select * from pg_class limit 1) t , pg_class where t.relname=pg_class.relname;  
 relname   
---------  
 pg_type  
(1 row)  

JOIN

postgres=# select t1.relname,t2.rolname from pg_class t1, pg_authid t2 where t1.relowner=t2.oid limit 10;  
        relname        | rolname    
-----------------------+----------  
 pg_type               | postgres  
 pg_toast_187550       | postgres  
 new_type              | postgres  
 pg_toast_187550_index | postgres  
 test                  | postgres  
 pg_toast_187556       | postgres  
 pg_toast_187556_index | postgres  
 tblaccount4           | postgres  
 hints_id_seq          | postgres  
 pg_toast_17134        | postgres  
(10 rows)  

update from

postgres=# create table tbl7(id int, info text, crt_time timestamp);  
CREATE TABLE  
postgres=# create table tbl8(id int, info text, crt_time timestamp);  
CREATE TABLE  
postgres=# insert into tbl7 select generate_series(1,100), 'test', now();  
INSERT 0 100  
postgres=# insert into tbl8 select generate_series(1,100), md5(random()::text), now();  
INSERT 0 100  
postgres=# update tbl7 set info=tbl8.info from tbl8 where tbl7.id=tbl8.id;  
UPDATE 100  
postgres=# select info from tbl7 limit 10;  
               info                 
----------------------------------  
 4c86016ec0236be89de3ef4f6044b201  
 b7a9c835cac248ef0de3003f4f41e57e  
 60173e7d7bd328826f48cdf32b74ae96  
 dec7041c58dcb367a0ab59c272032d80  
 775017af1ec532808e24be24ed9e1593  
 67b7326219629ea22d88bdb47e1f4b54  
 0da20f68c459518081f4f3c3a58fc088  
 21b20b667563a7d67f0a92aae2c64b09  
 4074650815e08ddb6f2af8d4b05fd992  
 a2cf8866d99361a545b7a96cbb718a9c  
(10 rows)  
相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
11月前
|
SQL Oracle 关系型数据库
实时计算 Flink版操作报错之往GREENPLUM 6 写数据,用postgresql-42.2.9.jar 报 ON CONFLICT (uuid) DO UPDATE SET 语法有问题。怎么解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
11月前
|
关系型数据库 Linux PostgreSQL
这个错误是因为Flink CDC在尝试访问PostgreSQL的"decoderbufs"文件时,发现该文件不存在
【1月更文挑战第23天】【1月更文挑战第111篇】这个错误是因为Flink CDC在尝试访问PostgreSQL的"decoderbufs"文件时,发现该文件不存在
295 11
|
30天前
|
SQL 关系型数据库 PostgreSQL
【YashanDB 知识库】从 PostgreSQL 迁移到 YashanDB 如何进行数据行数比对
【YashanDB 知识库】从 PostgreSQL 迁移到 YashanDB 如何进行数据行数比对
|
1月前
|
SQL Oracle 关系型数据库
【YashanDB知识库】从PostgreSQL迁移到YashanDB如何进行数据行数比对
本文介绍了通过Oracle视图`v$sql`和`v$sql_plan`分析SQL性能的方法。首先,可通过`plan_hash_value`从`v$sql_plan`获取SQL执行计划,结合示例展示了具体查询方式。文章还创建了一个UDF函数`REPEAT`用于格式化输出,便于阅读复杂执行计划。最后,通过实例展示了如何根据`plan_hash_value`获取SQL文本及其内存中的执行计划,帮助优化性能问题。
|
4月前
|
存储 关系型数据库 数据库
【赵渝强老师】PostgreSQL的数据文件
PostgreSQL的物理存储结构主要包括数据文件、日志文件等。数据文件按oid命名,超过1G时自动拆分。通过查询数据库和表的oid,可定位到具体的数据文件。例如,查询数据库oid后,再查询特定表的oid及relfilenode,即可找到该表对应的数据文件位置。
150 1
|
10月前
|
消息中间件 Java 关系型数据库
实时计算 Flink版操作报错合集之从 PostgreSQL 读取数据并写入 Kafka 时,遇到 "initial slot snapshot too large" 的错误,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
1072 0
|
10月前
|
DataWorks 安全 关系型数据库
DataWorks产品使用合集之使用Flink CDC读取PostgreSQL数据时如何指定编码格式
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
146 0
|
9月前
|
关系型数据库 分布式数据库 数据库
PolarDB产品使用问题之如何进行PostgreSQL(简称PG)的全量和增量备份管理
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。
|
8月前
|
SQL 关系型数据库 MySQL
SQL Server、MySQL、PostgreSQL:主流数据库SQL语法异同比较——深入探讨数据类型、分页查询、表创建与数据插入、函数和索引等关键语法差异,为跨数据库开发提供实用指导
【8月更文挑战第31天】SQL Server、MySQL和PostgreSQL是当今最流行的关系型数据库管理系统,均使用SQL作为查询语言,但在语法和功能实现上存在差异。本文将比较它们在数据类型、分页查询、创建和插入数据以及函数和索引等方面的异同,帮助开发者更好地理解和使用这些数据库。尽管它们共用SQL语言,但每个系统都有独特的语法规则,了解这些差异有助于提升开发效率和项目成功率。
898 0
|
8月前
|
SQL 关系型数据库 HIVE
实时计算 Flink版产品使用问题之如何将PostgreSQL数据实时入库Hive并实现断点续传
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • 下一篇
    oss创建bucket