一篇文章搞懂人工智能、机器学习和深度学习之间的区别

简介: 概述 2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源。这两年在不管在国内还是在国外,人工智能、机器学习仿佛一夜之前传遍大街小巷。机器学习作为人工智能的一种类型,可以让软件根据大量的数据来对未来的情况进行阐述或预判。

概述

2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源。这两年在不管在国内还是在国外,人工智能、机器学习仿佛一夜之前传遍大街小巷。机器学习作为人工智能的一种类型,可以让软件根据大量的数据来对未来的情况进行阐述或预判。如今,领先的科技巨头无不在机器学习下予以极大投入。Facebook、苹果、微软,甚至国内的百度,Google 自然也在其中。

去年早些时候 Google DeepMind 的 AlphaGo 项目在举世瞩目的围棋比赛中一举击败了韩国选手李世石,媒体就是使用了人工智能、机器学习和深度学习这几个术语,来解释 DeepMind 获胜的原因,并将它们混为一谈。但是三者其实不是一回事。

区别与联系

本文借助Michael Copeland的讲解,让我们撩开人工智能、机器学习和深度学习的概念,深入理解它们的关系和区别。为了搞清三者关系,我们来看一张图:
这里写图片描述

如图所示:人工智能最大,此概念也最先问世;然后是机器学习,出现的稍晚;最后才是深度学习。
在之前的文章机器学习的发展历程 一文中,我们详细的介绍了机器学习的发展历史。

从低潮到繁荣

自从 1956 年计算机科学家们在达特茅斯会议(Dartmouth Conferences)上确认人工智能这个术语以来,人们就不乏关于人工智能奇思妙想,研究人员也在不遗余力地研究。在此后的几十年间,人工智能先是被捧为人类文明光明未来的钥匙,后又被当作过于自大的异想天开而抛弃。

但是在过去几年中,人工智能出现了爆炸式的发展,尤其是 2015 年之后。大部分原因,要归功于图形处理器(GPU)的广泛应用,使得并行处理更快、更便宜、更强大。另外,人工智能的发展还得益于几乎无限的存储空间和海量数据的出现(大数据运动):图像、文本、交易数据、地图数据,应有尽有。

下面我们从发展的历程中来一一展开对人工智能、机器学习和深度学习的深度学习。

人工智能

这里写图片描述

人工智能先驱们在达特茅斯开会时,心中的梦想是希望通过当时新兴的计算机,打造拥有相当于人类智能的复杂机器。这就是我们所说的“通用人工智能”(General AI)概念,拥有人类五感(甚至更多)、推理能力以及人类思维方式的神奇机器。在电影中我们已经看过无数这样的机器人,对人类友好的 C-3PO,以及人类的敌人终结者。通用人工智能机器至今只存在 于电影和科幻小说里,理由很简单:我们还实现不了,至少目前为止。

我们力所能及的,算是“弱人工智能”(Narrow AI):执行特定任务的水平与人类相当,甚至超越人类的技术。现实中有很多弱人工智能的例子。这些技术有人类智能的一面。但是它们是如何做到的?智能来自哪里?这就涉及到下一个同心圆:机器学习。

机器学习

这里写图片描述

机器学习是实现人工智能的一种方法。机器学习的概念来自早期的人工智能研究者,已经研究出的算法包括决策树学习、归纳逻辑编程、增强学习和贝叶斯网络等。简单来说,机器学习就是使用算法分析数据,从中学习并做出推断或预测。与传统的使用特定指令集手写软件不同,我们使用大量数据和算法来“训练”机器,由此带来机器学习如何完成任务。

许多年来,计算机视觉一直是机器学习最佳的领用领域之一,尽管还需要大量的手动编码才能完成任务。研究者会手动编写一些分类器(classifier),如边缘检测筛选器,帮助程序辨别物体的边界;图形检测分类器,判断物体是否有八个面;以及识别“S-T-O-P”的分类器。在这些手动编写的分类器的基础上,他们再开发用于理解图像的算法,并学习如何判断是否有停止标志。

但是由于计算机视觉和图像检测技术的滞后,经常容易出错。

深度学习

这里写图片描述

深度学习是实现机器学习的一种技术。早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播方向也不同。

举个例子,你可以将一张图片切分为小块,然后输入到神经网络的第一层中。在第一层中做初步计算,然后神经元将数据传至第二层。由第二层神经元执行任务,依次类推,直到最后一层,然后输出最终的结果。

每个神经元都会给其输入指定一个权重:相对于执行的任务该神经元的正确和错误程度。最终的输出由这些权重共同决定。因此,我们再来看看上面提到的停止标志示例。一张停止标志图像的属性,被一一细分,然后被神经元“检查”:形状、颜色、字符、标志大小和是否运动。神经网络的任务是判断这是否是一个停止标志。它将给出一个“概率向量”(probability vector),这其实是基于权重做出的猜测结果。在本文的示例中,系统可能会有 86% 的把握认定图像是一个停止标志,7% 的把握认为是一个限速标志,等等。网络架构然后会告知神经网络其判断是否正确。
不过,问题在于即使是最基础的神经网络也要耗费巨大的计算资源,因此当时不算是一个可行的方法。不过,以多伦多大学 Geoffrey Hinton 教授为首的一小批狂热研究者们坚持采用这种方法,最终让超级计算机能够并行执行该算法,并证明该算法的作用。如果我们回到停止标志那个例子,很有可能神经网络受训练的影响,会经常给出错误的答案。这说明还需要不断的训练。它需要成千上万张图片,甚至数百万张图片来训练,直到神经元输入的权重调整到非常精确,几乎每次都能够给出正确答案。不过值得庆幸的是Facebook 利用神经网络记住了你母亲的面孔;吴恩达 2012 年在谷歌实现了可以识别猫的神经网络。

如今,在某些情况下,通过深度学习训练过的机器在图像识别上表现优于人类,这包括找猫、识别血液中的癌症迹象等。谷歌的 AlphaGo 学会了围棋,并为比赛进行了大量的训练:不断的和自己比赛。

总结

人工智能的根本在于智能,而机器学习则是部署支持人工智能的计算方法。简单的将,人工智能是科学,机器学习是让机器变得更加智能的算法,机器学习在某种程度上成就了人工智能。
试想一下,随着人工智能的发展,有朝一日,终结者的场景会出现在我们面前。

目录
相关文章
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:深度学习与神经网络
【9月更文挑战第11天】本文将深入探讨人工智能的核心领域——深度学习,以及其背后的神经网络技术。我们将从基础理论出发,逐步深入到实践应用,揭示这一领域的神秘面纱。无论你是AI领域的初学者,还是有一定基础的开发者,都能在这篇文章中获得新的启示和理解。让我们一起踏上这场探索之旅,揭开AI的神秘面纱,体验深度学习的魅力。
|
6天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的编程实践:从Python到深度学习的探索之旅
【9月更文挑战第6天】 在人工智能的黄金时代,编程不仅仅是一种技术操作,它成为了连接人类思维与机器智能的桥梁。本文将通过一次从Python基础入门到构建深度学习模型的实践之旅,揭示编程在AI领域的魅力和重要性。我们将探索如何通过代码示例简化复杂概念,以及如何利用编程技能解决实际问题。这不仅是一次技术的学习过程,更是对人工智能未来趋势的思考和预见。
|
7天前
|
机器学习/深度学习 人工智能 搜索推荐
揭秘AI的魔法:深度学习如何改变世界
在这篇文章中,我们将一起探索深度学习——一种强大的人工智能技术。我们将从基础开始,了解什么是深度学习以及它如何工作。然后,我们会看到深度学习是如何影响我们日常生活的各个方面,从医疗到自动驾驶汽车,再到个性化推荐系统。最后,我们将讨论深度学习面临的挑战和未来的可能性。让我们一起揭开深度学习的神秘面纱,看看这个“魔法”是如何改变我们的世界的。
|
17天前
|
机器学习/深度学习 人工智能 算法
探索AI的魔法:机器学习与深度学习的奥秘
【8月更文挑战第27天】在这篇文章中,我们将深入探讨人工智能的两个重要分支:机器学习和深度学习。我们将首先理解它们的基本概念,然后通过Python代码示例,展示如何应用这些技术解决实际问题。无论你是AI新手,还是有经验的开发者,这篇文章都将为你提供新的知识和启示。让我们一起开启这场AI的魔法之旅吧!
|
17天前
|
数据采集 机器学习/深度学习 人工智能
Python爬虫入门指南探索AI的无限可能:深度学习与神经网络的魅力
【8月更文挑战第27天】本文将带你走进Python爬虫的世界,从基础的爬虫概念到实战操作,你将学会如何利用Python进行网页数据的抓取。我们将一起探索requests库和BeautifulSoup库的使用,以及反爬策略的应对方法。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你打开一扇通往数据抓取世界的大门。
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的未来:深度学习的突破与挑战
【8月更文挑战第17天】本文将深入探讨人工智能的一个关键分支——深度学习,揭示其背后的原理、当前的研究热点以及未来可能遇到的挑战。我们将从深度学习的基础概念出发,逐步展开讨论,最后提出一个开放性问题,引发读者对未来技术发展的思考。
38 12
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的未来:深度学习与我们的生活
【8月更文挑战第22天】在本文中,我们将深入探讨人工智能(AI)的未来发展趋势,特别是深度学习如何影响我们的生活。我们将从AI的基本概念出发,逐步解析深度学习的原理和应用,最后探讨AI在未来可能带来的改变。
|
3天前
|
机器学习/深度学习 数据挖掘 TensorFlow
从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路
【9月更文挑战第10天】从数据新手成长为AI专家,需先掌握Python基础语法,并学会使用NumPy和Pandas进行数据分析。接着,通过Matplotlib和Seaborn实现数据可视化,最后利用TensorFlow或PyTorch探索深度学习。这一过程涉及从数据清洗、可视化到构建神经网络的多个步骤,每一步都需不断实践与学习。借助Python的强大功能及各类库的支持,你能逐步解锁数据的深层价值。
12 0
|
5天前
|
机器学习/深度学习 人工智能 自动驾驶
探索人工智能的未来:机器学习和深度学习的融合之旅
本文将带你进入人工智能的奇妙世界,一起探索机器学习和深度学习的融合如何引领我们走向更加智能化的未来。我们将从基础概念出发,逐步深入到技术细节和应用实例,揭示这一技术革新如何改变我们的生活和工作方式。通过深入浅出的解释和生动的例子,本文旨在为读者提供一次内容丰富、启发思考的技术之旅。
|
15天前
|
机器学习/深度学习 人工智能 监控
探索AI的无限可能:深度学习与图像识别
【8月更文挑战第29天】在这篇文章中,我们将深入探讨人工智能(AI)的一个关键领域——深度学习和图像识别。我们将通过一个简单的Python代码示例,展示如何使用深度学习模型进行图像分类。无论你是AI初学者,还是有一定经验的开发者,这篇文章都将为你提供有价值的信息和知识。

热门文章

最新文章