Flink – window operator

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介:

参考,

http://wuchong.me/blog/2016/05/25/flink-internals-window-mechanism/

http://wuchong.me/blog/2016/06/06/flink-internals-session-window/ 

 

WindowOperator

window operator通过WindowAssigner和Trigger来实现它的逻辑

当一个element到达时,通过KeySelector先assign一个key,并且通过WindowAssigner assign若干个windows,这样这个element会被放入若干个pane

一个pane会存放所有相同key和相同window的elements

复制代码
/**
 * An operator that implements the logic for windowing based on a {@link WindowAssigner} and
 * {@link Trigger}.
 *
 * <p>
 * When an element arrives it gets assigned a key using a {@link KeySelector} and it gets
 * assigned to zero or more windows using a {@link WindowAssigner}. Based on this, the element
 * is put into panes. A pane is the bucket of elements that have the same key and same
 * {@code Window}. An element can be in multiple panes if it was assigned to multiple windows by the
 * {@code WindowAssigner}.
 *
 * <p>
 * Each pane gets its own instance of the provided {@code Trigger}. This trigger determines when
 * the contents of the pane should be processed to emit results. When a trigger fires,
 * the given {@link InternalWindowFunction} is invoked to produce the results that are emitted for
 * the pane to which the {@code Trigger} belongs.
 *
 * @param <K> The type of key returned by the {@code KeySelector}.
 * @param <IN> The type of the incoming elements.
 * @param <OUT> The type of elements emitted by the {@code InternalWindowFunction}.
 * @param <W> The type of {@code Window} that the {@code WindowAssigner} assigns.
 */
@Internal
public class WindowOperator<K, IN, ACC, OUT, W extends Window>
    extends AbstractUdfStreamOperator<OUT, InternalWindowFunction<ACC, OUT, K, W>>
    implements OneInputStreamOperator<IN, OUT>, Triggerable, InputTypeConfigurable {

    // ------------------------------------------------------------------------
    // Configuration values and user functions
    // ------------------------------------------------------------------------

    protected final WindowAssigner<? super IN, W> windowAssigner;

    protected final KeySelector<IN, K> keySelector;

    protected final Trigger<? super IN, ? super W> trigger;

    protected final StateDescriptor<? extends AppendingState<IN, ACC>, ?> windowStateDescriptor;

    /**
     * The allowed lateness for elements. This is used for:
     * <ul>
     *     <li>Deciding if an element should be dropped from a window due to lateness.
     *     <li>Clearing the state of a window if the system time passes the
     *         {@code window.maxTimestamp + allowedLateness} landmark.
     * </ul>
     */
    protected final long allowedLateness; //允许late多久,即当watermark已经触发后


    /**
     * To keep track of the current watermark so that we can immediately fire if a trigger
     * registers an event time callback for a timestamp that lies in the past.
     */
    protected transient long currentWatermark = Long.MIN_VALUE;

    protected transient Context context = new Context(null, null); //Trigger Context

    protected transient WindowAssigner.WindowAssignerContext windowAssignerContext; //只为获取getCurrentProcessingTime

    // ------------------------------------------------------------------------
    // State that needs to be checkpointed
    // ------------------------------------------------------------------------

    /**
     * Processing time timers that are currently in-flight.
     */
    protected transient PriorityQueue<Timer<K, W>> processingTimeTimersQueue; //Timer用于存储timestamp,key,window, queue按时间排序

    /**
     * Current waiting watermark callbacks.
     */
    protected transient Set<Timer<K, W>> watermarkTimers;
    protected transient PriorityQueue<Timer<K, W>> watermarkTimersQueue; //

    protected transient Map<K, MergingWindowSet<W>> mergingWindowsByKey; //用于记录merge后的stateWindow和window的对应关系
复制代码

 

对于window operator而已,最关键的是WindowAssigner和Trigger

 

WindowAssigner

WindowAssigner,用于指定一个tuple应该被分配到那些windows去

借用个图,可以看出有多少种WindowAssigner

image

对于WindowAssigner,最关键的接口是,assignWindows

为一个element,分配一组windows, Collection<W>

复制代码
@PublicEvolving
public abstract class WindowAssigner<T, W extends Window> implements Serializable {
    private static final long serialVersionUID = 1L;

    /**
     * Returns a {@code Collection} of windows that should be assigned to the element.
     *
     * @param element The element to which windows should be assigned.
     * @param timestamp The timestamp of the element.
     * @param context The {@link WindowAssignerContext} in which the assigner operates.
     */
    public abstract Collection<W> assignWindows(T element, long timestamp, WindowAssignerContext context);

    /**
     * Returns the default trigger associated with this {@code WindowAssigner}.
     */
    public abstract Trigger<T, W> getDefaultTrigger(StreamExecutionEnvironment env);

    /**
     * Returns a {@link TypeSerializer} for serializing windows that are assigned by
     * this {@code WindowAssigner}.
     */
    public abstract TypeSerializer<W> getWindowSerializer(ExecutionConfig executionConfig);
复制代码

实际看下,具体WindowAssigner的实现

复制代码
public class TumblingProcessingTimeWindows extends WindowAssigner<Object, TimeWindow> {

    @Override
    public Collection<TimeWindow> assignWindows(Object element, long timestamp, WindowAssignerContext context) {
        final long now = context.getCurrentProcessingTime();
        long start = now - (now % size);
        return Collections.singletonList(new TimeWindow(start, start + size)); //很简单,分配一个TimeWindow
    }
    
    @Override
    public Trigger<Object, TimeWindow> getDefaultTrigger(StreamExecutionEnvironment env) {
        return ProcessingTimeTrigger.create(); //默认给出的是ProcessingTimeTrigger,如其名
    }
复制代码
复制代码
public class SlidingEventTimeWindows extends WindowAssigner<Object, TimeWindow> {

    private final long size;
    private final long slide;

    @Override
    public Collection<TimeWindow> assignWindows(Object element, long timestamp, WindowAssignerContext context) {
        if (timestamp > Long.MIN_VALUE) {
            List<TimeWindow> windows = new ArrayList<>((int) (size / slide));
            long lastStart = timestamp - timestamp % slide;
            for (long start = lastStart;
                start > timestamp - size;
                start -= slide) {
                windows.add(new TimeWindow(start, start + size)); //可以看到这里会assign多个TimeWindow,因为是slide
            }
            return windows;
        } else {

        }
    }

    @Override
    public Trigger<Object, TimeWindow> getDefaultTrigger(StreamExecutionEnvironment env) {
        return EventTimeTrigger.create();
    }
复制代码

 

Trigger, Evictor

参考,Flink – Trigger,Evictor

 

下面看看3个主要的接口,分别触发,onElement,onEventTime,onProcessingTime

processElement

处理element到达的逻辑,触发onElement

复制代码
public void processElement(StreamRecord<IN> element) throws Exception {
    Collection<W> elementWindows = windowAssigner.assignWindows(  //通过WindowAssigner为element分配一系列windows
        element.getValue(), element.getTimestamp(), windowAssignerContext);

    final K key = (K) getStateBackend().getCurrentKey();

    if (windowAssigner instanceof MergingWindowAssigner) { //如果是MergingWindow
        //.......
    } else { //如果是普通window
        for (W window: elementWindows) {

            // drop if the window is already late
            if (isLate(window)) { //late data的处理,默认是丢弃  
                continue;
            }

            AppendingState<IN, ACC> windowState = getPartitionedState( //从backend中取出该window的状态,就是buffer的element
                window, windowSerializer, windowStateDescriptor);
            windowState.add(element.getValue()); //把当前的element加入buffer state

            context.key = key;
            context.window = window; //context的设计相当tricky和晦涩

            TriggerResult triggerResult = context.onElement(element); //触发onElment,得到triggerResult

            if (triggerResult.isFire()) { //对triggerResult做各种处理
                ACC contents = windowState.get();
                if (contents == null) {
                    continue;
                }
                fire(window, contents); //如果fire,真正去计算窗口中的elements
            }

            if (triggerResult.isPurge()) {
                cleanup(window, windowState, null); //purge,即去cleanup elements
            } else {
                registerCleanupTimer(window);
            }
        }
    }
}
复制代码

 

判断是否是late data的逻辑

复制代码
protected boolean isLate(W window) {
    return (windowAssigner.isEventTime() && (cleanupTime(window) <= currentWatermark));
}
private long cleanupTime(W window) {
    long cleanupTime = window.maxTimestamp() + allowedLateness; //allowedLateness; 
    return cleanupTime >= window.maxTimestamp() ? cleanupTime : Long.MAX_VALUE;
}
复制代码

 

fire逻辑

private void fire(W window, ACC contents) throws Exception {
    timestampedCollector.setAbsoluteTimestamp(window.maxTimestamp());
    userFunction.apply(context.key, context.window, contents, timestampedCollector);
}

 

processWatermark

处理watermark,onEvent触发

复制代码
@Override
public void processWatermark(Watermark mark) throws Exception {
    boolean fire;
    do {
        Timer<K, W> timer = watermarkTimersQueue.peek(); //这叫watermarkTimersQueue,是否有些歧义,叫eventTimerQueue更好理解些
        if (timer != null && timer.timestamp <= mark.getTimestamp()) {
            fire = true;

            watermarkTimers.remove(timer);
            watermarkTimersQueue.remove();

            context.key = timer.key;
            context.window = timer.window;
            setKeyContext(timer.key);  //stateBackend.setCurrentKey(key);

            AppendingState<IN, ACC> windowState;
            MergingWindowSet<W> mergingWindows = null;

            if (windowAssigner instanceof MergingWindowAssigner) { //MergingWindow
                mergingWindows = getMergingWindowSet();
                W stateWindow = mergingWindows.getStateWindow(context.window);
                if (stateWindow == null) {
                    // then the window is already purged and this is a cleanup
                    // timer set due to allowed lateness that has nothing to clean,
                    // so it is safe to just ignore
                    continue;
                }
                windowState = getPartitionedState(stateWindow, windowSerializer, windowStateDescriptor);
            } else { //普通window
                windowState = getPartitionedState(context.window, windowSerializer, windowStateDescriptor); //取得window的state
            }

            ACC contents = windowState.get();
            if (contents == null) {
                // if we have no state, there is nothing to do
                continue;
            }

            TriggerResult triggerResult = context.onEventTime(timer.timestamp); //触发onEvent
            if (triggerResult.isFire()) {
                fire(context.window, contents);
            }

            if (triggerResult.isPurge() || (windowAssigner.isEventTime() && isCleanupTime(context.window, timer.timestamp))) {
                cleanup(context.window, windowState, mergingWindows);
            }

        } else {
            fire = false;
        }
    } while (fire); //如果fire为true,继续看下个waterMarkTimer是否需要fire

    output.emitWatermark(mark); //把waterMark传递下去

    this.currentWatermark = mark.getTimestamp(); //更新currentWaterMark
}
复制代码

 

trigger

首先,这个函数的命名有问题,为何和前面的process…不匹配

这个是用来触发onProcessingTime,这个需要依赖系统时间的定时器来触发,逻辑和processWatermark基本等同,只是触发条件不一样

复制代码
@Override
public void trigger(long time) throws Exception {
    boolean fire;

    //Remove information about the triggering task
    processingTimeTimerFutures.remove(time);
    processingTimeTimerTimestamps.remove(time, processingTimeTimerTimestamps.count(time));

    do {
        Timer<K, W> timer = processingTimeTimersQueue.peek();
        if (timer != null && timer.timestamp <= time) {
            fire = true;

            processingTimeTimers.remove(timer);
            processingTimeTimersQueue.remove();

            context.key = timer.key;
            context.window = timer.window;
            setKeyContext(timer.key);

            AppendingState<IN, ACC> windowState;
            MergingWindowSet<W> mergingWindows = null;

            if (windowAssigner instanceof MergingWindowAssigner) {
                mergingWindows = getMergingWindowSet();
                W stateWindow = mergingWindows.getStateWindow(context.window);
                if (stateWindow == null) {
                    // then the window is already purged and this is a cleanup
                    // timer set due to allowed lateness that has nothing to clean,
                    // so it is safe to just ignore
                    continue;
                }
                windowState = getPartitionedState(stateWindow, windowSerializer, windowStateDescriptor);
            } else {
                windowState = getPartitionedState(context.window, windowSerializer, windowStateDescriptor);
            }

            ACC contents = windowState.get();
            if (contents == null) {
                // if we have no state, there is nothing to do
                continue;
            }

            TriggerResult triggerResult = context.onProcessingTime(timer.timestamp);
            if (triggerResult.isFire()) {
                fire(context.window, contents);
            }

            if (triggerResult.isPurge() || (!windowAssigner.isEventTime() && isCleanupTime(context.window, timer.timestamp))) {
                cleanup(context.window, windowState, mergingWindows);
            }

        } else {
            fire = false;
        }
    } while (fire);
}
复制代码

 

EvictingWindowOperator

Evicting对于WindowOperator而言,就是多了Evictor

复制代码
private void fire(W window, Iterable<StreamRecord<IN>> contents) throws Exception {
    timestampedCollector.setAbsoluteTimestamp(window.maxTimestamp());

    // Work around type system restrictions...
    int toEvict = evictor.evict((Iterable) contents, Iterables.size(contents), context.window); //执行evict

    FluentIterable<IN> projectedContents = FluentIterable
        .from(contents)
        .skip(toEvict)
        .transform(new Function<StreamRecord<IN>, IN>() {
            @Override
            public IN apply(StreamRecord<IN> input) {
                return input.getValue();
            }
        });
    userFunction.apply(context.key, context.window, projectedContents, timestampedCollector);
}
复制代码

关键的逻辑就是在fire的时候,在apply function之前,会先remove需要evict的elements

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
SQL 消息中间件 分布式计算
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
111 0
|
2月前
|
SQL 分布式计算 大数据
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
115 0
|
4月前
|
SQL 存储 Unix
Flink SQL 在快手实践问题之设置 Window Offset 以调整窗口划分如何解决
Flink SQL 在快手实践问题之设置 Window Offset 以调整窗口划分如何解决
72 2
|
2月前
|
分布式计算 Java 大数据
大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window
大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window
45 0
|
2月前
|
SQL 消息中间件 分布式计算
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
43 0
|
4月前
|
SQL 安全 流计算
Flink SQL 在快手实践问题之Group Window Aggregate 中的数据倾斜问题如何解决
Flink SQL 在快手实践问题之Group Window Aggregate 中的数据倾斜问题如何解决
94 1
|
4月前
|
SQL 流计算
Flink SQL 在快手实践问题之使用Dynamic Cumulate Window绘制直播间累计UV曲线如何解决
Flink SQL 在快手实践问题之使用Dynamic Cumulate Window绘制直播间累计UV曲线如何解决
77 1
|
4月前
|
SQL 流计算
Flink SQL 在快手实践问题之Window TVF改进窗口聚合功能如何解决
Flink SQL 在快手实践问题之Window TVF改进窗口聚合功能如何解决
37 1
|
4月前
|
数据处理 调度 双11
Flink四大基石——1.window
Flink四大基石——1.window
65 0
|
7月前
|
NoSQL 关系型数据库 MySQL
实时计算 Flink版产品使用合集之如何在operator里跑flink cdc
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。