StreamingPro支持Flink的流式计算了

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 有的时候我们只要按条处理,追求实时性而非吞吐量的时候,类似Storm的模式就比较好了。Spark 在流式处理一直缺乏改进,而Flink在流式方面做得很棒,两者高层的API也是互相借鉴,容易形成统一的感官,所以决定让StreamingPro适配Flink,让其作为StreamingPro底层的流式引擎。
前言
有的时候我们只要按条处理,追求实时性而非吞吐量的时候,类似Storm的模式就比较好了。Spark 在流式处理一直缺乏改进,而Flink在流式方面做得很棒,两者高层的API也是互相借鉴,容易形成统一的感官,所以决定让StreamingPro适配Flink,让其作为StreamingPro底层的流式引擎。

StreamingPro自身设计之初就是为了支持多引擎的,所以改造成本很低,昨天花了一下午,晚上加了会班就重构完了。这次增强可以让我司的流式引擎有了新的选择。


准备工作


下载安装包

为了跑起来,你需要下载一个flink的包,我用的是 1.2.0版本的。

接着就是下载StreamingPro的 flink版本:

https://pan.baidu.com/s/1slCpxxV


启动flink

进入flink安装目录运行如下命令:

./bin/start-local.sh

之后写一个flink.json文件:

{
  "example": {
    "desc": "测试",
    "strategy": "flink",
    "algorithm": [],
    "ref": [],
    "compositor": [
      {
        "name": "flink.sources",
        "params": [
          {
            "format": "socket",
            "port": "9000",
            "outputTable": "test"
          }
        ]
      },
      {
        "name": "flink.sql",
        "params": [
          {
            "sql": "select * from test",
            "outputTableName": "finalOutputTable"
          }
        ]
      },
      {
        "name": "flink.outputs",
        "params": [
          {
            "name":"jack",
            "format": "console",
            "inputTableName": "finalOutputTable"
          }
        ]
      }
    ],
    "configParams": {
    }
  }
}
目前source 只支持 kafka/socket ,Sink则只支持console和csv。准备好这个文件你就可以提交任务了:
./bin/flink run  -c streaming.core.StreamingApp \ /Users/allwefantasy/streamingpro/streamingpro.flink-0.4.14-SNAPSHOT-online-1.2.0.jar 
-streaming.name god \
-streaming.platform flink_streaming \
-streaming.job.file.path file:///Users/allwefantasy/streamingpro/flink.json
然后皆可以了。
你也可以到localhost:8081 页面上提交你的任务。
4a67d284192869b784f4602f0f4ad01540dfbdb2


后面的话
Flink目前在流式计算上对SQL支持有限,暂时还不支持Join,Agg等行为操作,这个和Spark相比较而言差距还比较大。不过我们很快会将Script暴露出来,可以让大家直接进行编程,主要利用其Table API。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
1月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
304 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
8月前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
853 0
|
9月前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
本教程展示如何使用Flink CDC YAML快速构建从MySQL到Kafka的流式数据集成作业,涵盖整库同步和表结构变更同步。无需编写Java/Scala代码或安装IDE,所有操作在Flink CDC CLI中完成。首先准备Flink Standalone集群和Docker环境(包括MySQL、Kafka和Zookeeper),然后通过配置YAML文件提交任务,实现数据同步。教程还介绍了路由变更、写入多个分区、输出格式设置及上游表名到下游Topic的映射等功能,并提供详细的命令和示例。最后,包含环境清理步骤以确保资源释放。
727 2
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
|
SQL 流计算 关系型数据库
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。
1045 5
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
313 1
|
关系型数据库 API Apache
Flink CDC:基于 Apache Flink 的流式数据集成框架
本文整理自阿里云 Flink SQL 团队研发工程师于喜千(yux)在 SECon 全球软件工程技术大会中数据集成专场沙龙的分享。
20712 11
Flink CDC:基于 Apache Flink 的流式数据集成框架
|
消息中间件 传感器 数据处理
"揭秘实时流式计算:低延迟、高吞吐量的数据处理新纪元,Apache Flink示例带你领略实时数据处理的魅力"
【8月更文挑战第10天】实时流式计算即时处理数据流,低延迟捕获、处理并输出数据,适用于金融分析等需即时响应场景。其框架(如Apache Flink)含数据源、处理逻辑及输出目标三部分。例如,Flink可从数据流读取信息,转换后输出。此技术优势包括低延迟、高吞吐量、强容错性及处理逻辑的灵活性。
408 4
|
SQL 网络安全 API
实时计算 Flink版产品使用问题之使用ProcessTime进行窗口计算,并且有4台机器的时间提前了2个小时,会导致什么情况
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
SQL 监控 大数据
Serverless 应用的监控与调试问题之Flink流式数仓对于工商银行的数据链路要如何简化
Serverless 应用的监控与调试问题之Flink流式数仓对于工商银行的数据链路要如何简化