人类以为自己很强大,然而不过是一直在模仿大自然的造化而已,比如神经网络多少受些人脑神经的设计影响。
人类进步很快,制造工具,让自己进入石器时代,后面学会了让机器制造机器进入了工业时代,现在人类的目标是让机器设计机器,而这个正是用神经网络(深度学习)完成的。
我们知道,我们大脑具有基础的感知决策能力,而这些能力其实也是经过很多年被周围人训练出来的,随着人类的劳动分工,越来越多的专业领域需要专业的知识,我们通过专业的教育,让不同的人成为不同的领域的专家。教育本质就是经验的灌输,可能是规则,可能是不断的将以前的案例教给大家。
一个神经网络就和人类的大脑一样,一开始它什么都不是,没办法解决任何任务,为了能够让它具体完成一些任务,成为某个领域的专家,我们也要像对待学生一样,不断的灌输数据(经验),以及我们要达到的目标(目标输出),那么神经网络内部就会自动学习,完成内部数量庞大的参数选择,最后神奇的将自己变成了一个可以执行特定任务的机器了(譬如识别图片里的猫)。神经网络理论上可以拟合任何函数,不管人类知道的还是不知道的,所以想象空间很大。
在深度学习崛起之前,神经网络有三个问题没有被解决:
现在我们是人工去训练,我们也可以完全让机器自己去寻找标注好的数据训练出一个新的机器,实现自我设计和训练,也就是自己的进化。
另外值得一提的是,大多数的机器学习算法都是输出一个实数,而神经网络可以输出一个向量(矩阵),而这个向量是具有一定抽象和表征能力的高级特征集,譬如经过特定设计的神经网络如卷积网络可以将一些无意义的像素或者音频特征转化为具有表征能力的向量,如果用大脑来类比这种能力,其实就是讲我们看到的,听到的转化大脑可以识别的信号了。
人类进步很快,制造工具,让自己进入石器时代,后面学会了让机器制造机器进入了工业时代,现在人类的目标是让机器设计机器,而这个正是用神经网络(深度学习)完成的。
我们知道,我们大脑具有基础的感知决策能力,而这些能力其实也是经过很多年被周围人训练出来的,随着人类的劳动分工,越来越多的专业领域需要专业的知识,我们通过专业的教育,让不同的人成为不同的领域的专家。教育本质就是经验的灌输,可能是规则,可能是不断的将以前的案例教给大家。
一个神经网络就和人类的大脑一样,一开始它什么都不是,没办法解决任何任务,为了能够让它具体完成一些任务,成为某个领域的专家,我们也要像对待学生一样,不断的灌输数据(经验),以及我们要达到的目标(目标输出),那么神经网络内部就会自动学习,完成内部数量庞大的参数选择,最后神奇的将自己变成了一个可以执行特定任务的机器了(譬如识别图片里的猫)。神经网络理论上可以拟合任何函数,不管人类知道的还是不知道的,所以想象空间很大。
在深度学习崛起之前,神经网络有三个问题没有被解决:
- 没有一个有效的初始化参数设置方式,导致陷入局部最优,最后效果反倒不如一些其他传统的方法
- BP算法被提出前,梯度下降没办法被很好的利用,因为神经网络本质上是对嵌套函数的优化求解
- 参数空间过大,计算能力不足,样本也不足,容易陷入过拟合。大数据的崛起弥补了这几个缺陷
现在我们是人工去训练,我们也可以完全让机器自己去寻找标注好的数据训练出一个新的机器,实现自我设计和训练,也就是自己的进化。
另外值得一提的是,大多数的机器学习算法都是输出一个实数,而神经网络可以输出一个向量(矩阵),而这个向量是具有一定抽象和表征能力的高级特征集,譬如经过特定设计的神经网络如卷积网络可以将一些无意义的像素或者音频特征转化为具有表征能力的向量,如果用大脑来类比这种能力,其实就是讲我们看到的,听到的转化大脑可以识别的信号了。