Nginx + Shiro + Ehcache 实现负载均衡集群(成绩报告查询系统)

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 项目介绍 最近在做一款产品,对外提供学生成绩报告的查询,支付,查看以及下载等一系列功能,这里就简称成绩报告查询系统吧。 初步参赛人数十万左右,可能会存在相对高的并发同时在线,所以开发阶段就对负载均衡集群做了设计。

项目介绍

最近在做一款产品,对外提供学生成绩报告的查询,支付,查看以及下载等一系列功能,这里就简称成绩报告查询系统吧。

初步参赛人数十万左右,可能会存在相对高的并发同时在线,所以开发阶段就对负载均衡集群做了设计。

当然,涉及到负载均衡集群,就要考虑的Session存储的问题,由于项目本身使用了Ehcache做本地缓存,Shiro对其做了很好的封装,并且Ehcache也是支付分布式缓存同步的。所以,采用Ehcache做session存储暂且是一种实施方案。

关于Ehcache分布式缓存见:
http://blog.52itstyle.com/archives/568/

项目架构

Spring MVC4 + Shiro-1.3.2 + Ehcache-2.10.0

运行环境

Nginx + Tomcat7(3台) + JDK1.7

项目架构图

12

前端

前端服务器使用Nginx做负载均衡,开启Gizp压缩,并实现动静分离,所有静态文件(JS/CSS/PNG等)请求由Nginx处理。

#查询系统配置
server {
        listen       80;
        server_name  www.xxx.com  xxx.com;
        index  index.jsp index.html;
        location / {
              proxy_next_upstream http_502  http_504 error timeout invalid_header;
              proxy_pass      http://report;
        }
        location ~ .*.(css|js|png|jpg)$
        {
            proxy_pass http://report;
            proxy_cache cache;
            add_header Nginx-Cache $upstream_cache_status;#统计缓存命中
            proxy_set_header Accept-Encoding 'gzip';#强制浏览器
            expires 30d;
        }
}
upstream report {
          #ip_hash;
            server  172.16.1.120:8080 weight=1  max_fails=2 fail_timeout=30s;
            server  172.16.1.130:8080 weight=1  max_fails=2 fail_timeout=30s;
            server  172.16.1.150:8080 weight=1  max_fails=2 fail_timeout=30s;
}

后端

后端部署3台Tomcat服务器,所有动态请求(JSP/Action等)交给Tomcat处理,同时配置Tomcat的工作模式为Nio,这里大家可以自行百度Nio工作模式的优点。

实现方式

Nginx负载均衡模式本身支持加权轮询和ip_hash的。

ip_hash

同一个用户的请求将全部分配到一台服务,当然也就不存在session共享的问题。但是可能由于请求IP的不固定性,导致单个服务负载过大;如果其中一台宕掉,用户状态也不能转移。

所以,如果是基于ip_hash的配置,Ehcache本地缓存和分布式缓存都可以实现。

加权轮询

每一个用户的每一次请求根据权重分配到不同的机器,这就涉及到了session共享的问题。打个比方,如果用户登录是后端服务器A并且保存了用户信息,但是下一次请求可能就会跳转到后端服务器B,可想而知,这时B是没有用户信息的,也就是说用户还得跳转到登录页面。

这就涉及到分布式缓存的问题了,如果实现服务器ABC之间session同步的问题,图中所示,由RMI组播方式实现Ehcache缓存的同步。所以,如果采用加权轮询必须使用分布式缓存管理session。

项目实现

applicationContext-ehcache.xml 配置:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context"
    xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx"
    xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-4.0.xsd
            http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-4.0.xsd
            http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-4.0.xsd
            http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-4.0.xsd">

    <description>Shiro EhCacheManager(单点最好使用此配置,集群下使用redisManager)</description>
    
    <!-- 缓存配置-->
    <bean id="cacheManager" class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean">
        <property name="configLocation" value="classpath:cache/ehcache-rmi.xml" />
    </bean> 
    
     <!-- 缓存管理 -->
    <bean id="shiroCacheManager" class="org.apache.shiro.cache.ehcache.EhCacheManager">
        <property name="cacheManager" ref="cacheManager"/>
    </bean>
    
    <!-- 会话DAO -->
    <bean id="sessionDAO" class="org.apache.shiro.session.mgt.eis.EnterpriseCacheSessionDAO">
          <property name="cacheManager" ref="shiroCacheManager" />
    </bean> 
    
</beans>

ehcache-rmi.xml 配置:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache updateCheck="false" name="defaultCache">
    <!-- 分布式缓存RMI同步(大规模集群、复杂环境慎用) -->
    <diskStore path="java.io.tmpdir" />
        
    <cacheManagerPeerProviderFactory class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
        properties="peerDiscovery=automatic,multicastGroupAddress=230.0.0.1, multicastGroupPort=4446" />
    <cacheManagerPeerListenerFactory class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory" />

    <!-- 默认缓存配置. -->
    <defaultCache maxEntriesLocalHeap="100" eternal="false" timeToIdleSeconds="300" timeToLiveSeconds="600"
        overflowToDisk="true" maxEntriesLocalDisk="100000" >
        <cacheEventListenerFactory class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"
            properties="replicatePuts=false,replicateUpdatesViaCopy=false"/>
    </defaultCache>
    
    <!-- 系统缓存 -->
    <cache name="sysCache" maxEntriesLocalHeap="100" eternal="true" overflowToDisk="true">
        <cacheEventListenerFactory class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
    </cache>
    
    <!-- 系统活动会话缓存 -->
    <cache name="shiro-activeSessionCache" maxEntriesLocalHeap="10000" overflowToDisk="true"
            eternal="true" timeToLiveSeconds="0" timeToIdleSeconds="0"
            diskPersistent="true" diskExpiryThreadIntervalSeconds="600">
        <cacheEventListenerFactory class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"
            properties="replicateAsynchronously=true, replicatePuts=true, replicateUpdates=true,
                replicateUpdatesViaCopy=false, replicateRemovals=true "/>
    </cache>
        
</ehcache>

实现缺点

HCACHE的组播做得比较初级,功能只是基本实现(比如简单的一个HUB,接两台单网卡的服务器,互相之间组播同步就没问题),对一些复杂的环境(比如多台服务器,每台服务器上多地址,尤其是集群,存在一个集群地址带多个物理机,每台物理机又带多个虚拟站的子地址),就容易出现问题。

究其原因, 组播/广播转发是一个很复杂的过程. 简单的说, 一个组播缺省只能在一个网段内传输,不能跨网段。

更何况在一些云计算的环境,集群的分布往往是跨网段的,甚至是跨地域的.这时更难以依赖这种初级的组播同步。

总之,分布式集群架构,建议使用Redis或者Memcache缓存实现。

下一篇文章继续讲 基于 Nginx + Shiro + Redis 实现负载均衡集群(成绩报告查询系统升级篇)

声明:本文内容大体流程仅供参考,有些并未涉及到具体代码实现。

小站 http://blog.52itstyle.com

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
目录
相关文章
|
25天前
|
弹性计算 负载均衡 网络协议
ECS中实现nginx4层7层负载均衡和ALB/NLB原SLB负载均衡
通过本文的介绍,希望您能深入理解并掌握如何在ECS中实现Nginx四层和七层负载均衡,以及如何使用ALB和NLB进行高效的负载均衡配置,以提高系统的性能和可靠性。
86 9
|
2月前
|
缓存 负载均衡 算法
如何配置Nginx反向代理以实现负载均衡?
如何配置Nginx反向代理以实现负载均衡?
|
1月前
|
负载均衡 算法 应用服务中间件
Nginx的负载均衡
Nginx 是一款高性能的Web服务器与反向代理服务器,支持负载均衡功能,能有效提升系统性能与可靠性。其负载均衡策略包括基于轮询和权重的分配方法,以及IP哈希、最小连接数等算法,可根据实际需求灵活选择。
120 5
|
1月前
|
负载均衡 前端开发 应用服务中间件
负载均衡指南:Nginx与HAProxy的配置与优化
负载均衡指南:Nginx与HAProxy的配置与优化
69 3
|
1月前
|
负载均衡 网络协议 算法
Docker容器环境中服务发现与负载均衡的技术与方法,涵盖环境变量、DNS、集中式服务发现系统等方式
本文探讨了Docker容器环境中服务发现与负载均衡的技术与方法,涵盖环境变量、DNS、集中式服务发现系统等方式,以及软件负载均衡器、云服务负载均衡、容器编排工具等实现手段,强调两者结合的重要性及面临挑战的应对措施。
87 3
|
2月前
|
负载均衡 监控 算法
论负载均衡技术在Web系统中的应用
【11月更文挑战第4天】在当今高并发的互联网环境中,负载均衡技术已经成为提升Web系统性能不可或缺的一环。通过有效地将请求分发到多个服务器上,负载均衡不仅能够提高系统的响应速度和处理能力,还能增强系统的可扩展性和稳定性。本文将结合我参与的一个实际软件项目,从项目概述、负载均衡算法原理以及实际应用三个方面,深入探讨负载均衡技术在Web系统中的应用。
127 2
|
2月前
|
负载均衡 算法 应用服务中间件
Nginx 常用的负载均衡算法
【10月更文挑战第22天】不同的负载均衡算法各有特点和适用场景。在实际应用中,需要根据具体的业务需求、服务器性能和网络环境等因素来选择合适的算法。
98 3
|
2月前
|
缓存 应用服务中间件 网络安全
Nginx中配置HTTP2协议的方法
Nginx中配置HTTP2协议的方法
146 7
|
3月前
|
应用服务中间件 BI nginx
Nginx的location配置详解
【10月更文挑战第16天】Nginx的location配置详解
|
3月前
|
缓存 负载均衡 安全
Nginx常用基本配置总结:从入门到实战的全方位指南
Nginx常用基本配置总结:从入门到实战的全方位指南
398 0