2 车型识别的探索和实践

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 目标检测是计算机视觉和数字图像处理的一个热门方向,广泛应用于机器人导航、智能视频监控、工业检测、视频结构化等领域等诸多领域,通过计算机视觉减少对人力资本的消耗,具有重要的现实意义。例如在监控安防领域,我们可以通过对行人和车辆进行目标检测、识别,对目标结构化,再将结构化后的语义存储起来,实现文字和视频的映射,能够在警察办案时提供快速查询视频的能力。而在工业场景下,目标检测可以对产品进行缺陷检测,在自动化流水线上设置高清摄像头,对工业产品的缺陷特征建模后,摄像头采集产品的图片,目标检测模型就能定位产品上的缺陷,从而提高产品质检的效率,提高收益。由于深度学习的广泛运用,目标检测算法得到了较为快速的发

2.1 研究意义
(1)解决视频资源无法产生价值、浪费存储资源的问题
在园区安防、仓储监管、智慧交通领域,有大量的摄像头对某一场景进行监控,并将获得的视频存储到本地服务器,占用大量的存储资源,存储一定周期后便进行删除。所获得视频资源除了备份之外,并未发挥更多的价值。而通过视频结构化分析,一方面可以通过提取关键帧、关键元素来减少视频存储的资源消耗,另一方面,便于检索,在需要时可以更快速地找到目标。
(2)解决无法融入大数据体系的问题
监控录像作为非结构化数据,它不能直接被计算机读取和识别,因此一直无法较好地与大数据体系进行兼容,无法利用计算机来进行视频数据的分析和挖掘。而视频图像能否通过智能分析技术经济而又高效地进行结构化处理,是视频大数据在智慧城市、数字社区领域落地的关键。
(3)沉淀产品 —— 视频结构化分析
视频结构化不仅仅可以服务于雷数大数据平台,也可以作为单独的产品提供给客户,结合人体行为识别,可以针对用户的某一特定场景产生价值,如工人进入工地是否带安全帽、作业行为是否符合规范等。
(4)技术积累 —— 计算机视觉
当前人工智能在工业场景的应用中,计算机视觉技术的需求场景占据较多比例,同时在工业、物流业、智慧城市行业的项目中有多种应用,但公司目前在该领域的技术积累仍然较少,因此实践和积累相关的计算机视觉技术经验对于公司未来发展具有重要意义。
2.2 公开数据集
MIO-TCD数据集是由在一天中的不同时间和一年中不同时段获得的137,743个图像组成,这些图像来自在加拿大和美国各地部署的数千个交通摄像机。选择这些图像是为了应对广泛的目标识别挑战,并且代表了当今城市交通情景中捕获的典型视觉数据。每个移动物体已被近200人仔细识别,以便于实现各种算法的定量比较和排序。该数据集旨在提供严格的基准测试,用于训练和测试现有的或新的算法,对交通场景中移动车辆进行分类和定位。
包含的数据标签有11类:
o Articulated truck(铰链式挂车)
o Bicycle(自行车)
o Bus(公交车)
o Car(轿车)
o Motorcycle(摩托车)
o Motorized vehicle (i.e. Vehicles that are too small to be labeled into a specific category)(因目标对象在图像中太小而无法标定为特定类别的车辆)
o Non-motorized vehicle(非机动车)
o Pedestrian(行人)
o Pickup truck(皮卡车)
o Single unit truck(单箱载重汽车)
o Work van(7座的商务车或面包车)
类别样例如下:

Articulated truck Bicycle Bus Car

Motorcycle Non-motorized vehicle Pedestrian Pickup truck

Single unit truck Work van
然后我们开始对车型图片进行标注,标注的软件我们使用的是开源的LabelImg,下载地址:https://github.com/tzutalin/labelImg。点击“Open Dir”、“Change Save Dir”选择刚刚建立的images以及labels文件夹,接下来就可以使用按钮选择需要label的图片,点击“Create RectBox”激活窗口绘图工具,开始标注,如图5.2所示。

模型训练完成,如图所示,能识别出car、work_van、single_unit_truck、pedestrian这些细分特征。mAP=0.70.

2.3 结果评价
YoloV3在其官网的介绍中写道,其在COCO数据集中能达到60.6%的map,而本文使用的MIO-TCD数据集在2017年的CVPR MIO-TCD挑战赛的结果中,最高达到了77%的平均精度,因此,本文测试的YoloV3模型的mAP为70%属于正常范围。YoloV3在55个epoch的训练后期有点过拟合了,所以,模型继续训练的意义不大,只能更改YoloV3模型,提高其性能。
YOLOv3参数表如表5.2所示,方便以后再遇到类似目标检测任务时速查。
表5.2 YOLOv3训练参数
参数类型 参数值
batch_size 8
image_size 416
cfg.filters num(yolo层个数)*(classes+5)
epoch 52
mAP 0.7
image.png

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
机器学习/深度学习 计算机视觉
深度学习常见的损失函数
深度学习常见的损失函数
598 1
深度学习常见的损失函数
|
10月前
|
机器学习/深度学习 人工智能 算法
现身说法,AI小白的大模型学习路径
写这篇文章的初衷:作为一个AI小白,把我自己学习大模型的学习路径还原出来,包括理解的逻辑、看到的比较好的学习材料,通过一篇文章给串起来,对大模型建立起一个相对体系化的认知,才能够在扑面而来的大模型时代,看出点门道。
1205 79
|
8月前
|
人工智能 编解码 自动驾驶
RF-DETR:YOLO霸主地位不保?开源 SOTA 实时目标检测模型,比眨眼还快3倍!
RF-DETR是首个在COCO数据集上突破60 mAP的实时检测模型,结合Transformer架构与DINOv2主干网络,支持多分辨率灵活切换,为安防、自动驾驶等场景提供高精度实时检测方案。
1446 6
RF-DETR:YOLO霸主地位不保?开源 SOTA 实时目标检测模型,比眨眼还快3倍!
|
Web App开发 前端开发 JavaScript
JavaScript Web Full Stack 全栈开发者路线及内容推荐
本文详细介绍了一条全面的JavaScript全栈开发者学习路径,涵盖基础知识、前端和后端开发、数据库与API、MERN Stack与React Native、工程化与部署、安全与测试、未来趋势等方面。推荐了HTML5、CSS3、JavaScript(ES6+)、Node.js、React.js、Vue.js、Svelte、Tailwind CSS、Web Components等关键技术,并提供了丰富的书籍、博主和在线资源。此外,还回顾了JavaScript的历史,并推荐了多个活跃的社区和平台,帮助开发者紧跟技术前沿。
|
文字识别
文本,文字识别,PaddleOCR,如何删除,PaddleOCR详解,检测,方向分类器,识别,检测的意思是检查字符的位置,查像素坐标,方向分类器,能够实现180度的图像,字符识别是把识别字符
文本,文字识别,PaddleOCR,如何删除,PaddleOCR详解,检测,方向分类器,识别,检测的意思是检查字符的位置,查像素坐标,方向分类器,能够实现180度的图像,字符识别是把识别字符
|
SQL 关系型数据库 MySQL
Vanna使用ollama分析本地数据库
这篇文章详细介绍了如何使用Vanna和Ollama框架来分析本地数据库,实现自然语言查询转换为SQL语句并与数据库交互的过程。
2573 7
Vanna使用ollama分析本地数据库
|
编解码 算法 计算机视觉
YOLOv8数据增强预处理方式详解:包括数据增强的作用,数据增强方式与方法
YOLOv8数据增强预处理方式详解:包括数据增强的作用,数据增强方式与方法
|
SQL 自然语言处理 数据库
DAIL-SQL: 发掘LLM的NL2SQL能力
最近,DAIL-SQL在魔搭创空间上线,并在NL2SQL任务上取得了新的SOTA。DAIL-SQL可以更好地利用LLM的NL2SQL能力,本文对其进行详细解读。
|
传感器 人工智能 算法
AI计算机视觉笔记二十七:YOLOV8实现目标追踪
本文介绍了使用YOLOv8实现人员检测与追踪的方法。通过为每个人员分配唯一ID,实现持续追踪,并可统计人数,适用于小区或办公楼出入管理。首先解释了目标检测与追踪的区别,接着详细描述了使用匈牙利算法和卡尔曼滤波实现目标关联的过程。文章提供了基于IOU实现追踪的具体步骤,包括环境搭建、模型加载及追踪逻辑实现。通过示例代码展示了如何使用YOLOv8进行实时视频处理,并实现人员追踪功能。测试结果显示,该方法在实际场景中具有较好的应用潜力。
1919 4