传统企业业务升级的一些思路和方法

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据平台的概述大数据平台统一管理、集中存储大数据资源,满足高并发,海量数据对高性能计算能力和大容量存储能力的需求,提供数据采集,数据计算,数据存储,数据分析,数据可视化等大量开放能力,确保各系统之间数据的互联互通和共享,为数据的全链条透明化、运营决策的高度智能化提供依据,尽早建立大数据平台具有重要意义。

大数据平台的概述

大数据平台统一管理、集中存储大数据资源,满足高并发,海量数据对高性能计算能力和大容量存储能力的需求,提供数据采集,数据计算,数据存储,数据分析,数据可视化等大量开放能力,确保各系统之间数据的互联互通和共享,为数据的全链条透明化、运营决策的高度智能化提供依据,尽早建立大数据平台具有重要意义。

构建大数据平台的必要性

大数据平台承载所有数据的管理,为上层应用提供数据支撑。传统的开发模式中,各个应用开发独立进行,各自沉淀自己的数据。各个应
用的数据缺乏整合,形成数据孤岛,后续无法沉淀数据资产。同时,因为没有一个统一的大数据平台,各个应用都会有自己的数据存储和计算体系,存在大量的重复建设。
以数据中台为核心的上层智能应用的开发,离不开大数据平台的支持。大数据平台提供统一的数据数据存储,计算能力。上层应用不需要再重复开发,只需要使用数据中台提供的能力。同时,多个上层应用的数据也集中沉淀到一起,形成有效的数据资产。

大数据平台建设

一般来说大数据主要具有以下特征

  • 数据海量性
  • 数据稀疏性
  • 数据复杂性
  • 数据丰富性

大数据平台架构一般包含以下组件

  • 数据采集
  • 数据存储
  • 数据计算
  • 数据管理
  • 数据服务

大数据集成子系统

大数据平台需要提供数据采集能力,完成从传统数据库到大数据平台的数据采集,包含批量采集和基于流处理的实时采集,平台提供如下能力:

  • 批量数据采集:大数据平台支持数据批量采集,对于大量、实时性要求不高的数据适宜采用定时执行批量采集。
  • 实时数据采集:对于实时性要求较高的数据,支持实时数据采集的方式,保障平台数据及时性。
  • 互联网数据采集:互联网的数据采集方式主要以页面文本或文档形式的数据为主,为了兼容不同类型的互联网输入方式,一般先将数据进行流式数据清洗后,再送到搜索引擎或者其他数据库中。

大数据开发子系统

大数据平台需要提供对海量数据汇总后的多种数据并行处理,包括离线的批处理、SQL 处理、以及近实时的内存处理等,大数据平台提供如下数据开发功能,帮助实现数据治理,数据聚合和数据转换,平台提供如下能力:

  • 数据查询:数据开发支持各种常用数据库的SQL语句,例如Oracle、MySql、SQLite、PostgreSQL、Hive等等。
  • 数据开发编辑器:数据开发编辑器支持常见语言及脚本编辑模式,可以结合实际情况,自由选择开发形式,轻松实现数据治理任务开发的模块化、组件化。
  • 数据处理工作流配置:在数据开发编辑器中,写好数据处理的任务后,可以将这些任务添加到数据处理工作流中,让这些处理任务按顺序逐个执行,实现数据处理工作流程的自动化。如下图所示,拖动任务类型图标至工作流中即可,所有任务将按照箭头顺序从上到下执行。
  • 数据工作流定时执行设置:新增定时任务,选择需要定时执行的工作流,配置工作流运行周期、时区和运行时间区间,即可实现数据处理任务的自动定时执行。
相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
监控 物联网 开发工具
MQTT常见问题之MQTT云端sdk消费者 出现重复消费如何解决
MQTT(Message Queuing Telemetry Transport)是一个轻量级的、基于发布/订阅模式的消息协议,广泛用于物联网(IoT)中设备间的通信。以下是MQTT使用过程中可能遇到的一些常见问题及其答案的汇总:
快速生成软著申请时所需的60页代码文档的免费工具
本篇文章主要讲解,制作软著代码文档的高效方法,当然不可能手动一个个复制了,这显然太笨拙,他浪费时间了。这里我给大家介绍一个更快的方式。
8710 0
|
前端开发 搜索推荐 API
【Prompt Engineering:ReAct 框架】
ReAct 框架由 Yao 等人(2022)提出,结合大语言模型(LLMs)生成推理轨迹与任务操作,交替进行推理与行动。此框架允许模型与外部环境(如知识库)互动,以动态更新操作计划并处理异常。ReAct 在语言和决策任务上表现优异,提升模型的人类可解释性和可信度。研究显示,ReAct 优于多个基准模型,尤其在结合链式思考时效果最佳。通过实例演示,ReAct 能有效整合内外部信息,优化推理过程。
770 9
【Prompt Engineering:ReAct 框架】
|
Python
在Python中,`try...except`语句用于捕获和处理程序运行时的异常
在Python中,`try...except`语句用于捕获和处理程序运行时的异常
334 5
|
8月前
|
人工智能 Java 程序员
一文彻底搞定HarmonyOS NEXT中的属性动画
本文介绍了HarmonyOS中的属性动画,通过改变UI属性(如宽度、高度、颜色等)实现平滑过渡效果,提升用户体验。代码示例展示了如何声明状态变量、设置动画属性并触发动画,支持无限循环和加载时自动启动动画。旨在帮助开发者更好地掌握属性动画的应用。
262 5
一文彻底搞定HarmonyOS NEXT中的属性动画
|
存储 分布式计算 NoSQL
【赵渝强老师】大数据技术的理论基础
本文介绍了大数据平台的核心思想,包括Google的三篇重要论文:Google文件系统(GFS)、MapReduce分布式计算模型和BigTable大表。这些论文奠定了大数据生态圈的技术基础,进而发展出了Hadoop、Spark和Flink等生态系统。文章详细解释了GFS的架构、MapReduce的计算过程以及BigTable的思想和HBase的实现。
542 0
|
10月前
|
存储 关系型数据库 MySQL
MySQL进阶突击系列(06)MySQL有几种锁?| 别背答案,现场演示一下
本文详细解析了MySQL InnoDB存储引擎的锁机制,涵盖读锁、写锁、意向锁、记录锁、间隙锁和临键锁等8种锁类型。重点探讨了不同锁类型的加锁与释放方式,以及事务并发场景下的实战验证。通过具体示例,展示了在不同情况下锁的行为及其对事务的影响。文章还特别强调了锁的作用范围主要是索引,并解释了锁如何影响数据的读写操作。最后总结了并发事务中加锁规则,帮助读者深入理解MySQL的锁机制。
|
10月前
|
人工智能 Java
产品经理-面试问题(高频率)
本文全面介绍初入产品岗位的基本面试问题,涵盖离职原因、技术沟通、薪资期望、到岗时间、个人优劣势及竞品调研分析等内容。针对每个问题提供详细回答示例,帮助求职者更好地准备面试,提升应答技巧和自信心。内容涉及职业成长、公司文化匹配、工作与生活平衡等多方面考量,助力求职者找到理想职位。
|
数据采集 分布式计算 OLAP
最佳实践:AnalyticDB在企业级大数据分析中的应用案例
【10月更文挑战第22天】在数字化转型的大潮中,企业对数据的依赖程度越来越高。如何高效地处理和分析海量数据,从中提取有价值的洞察,成为企业竞争力的关键。作为阿里云推出的一款实时OLAP数据库服务,AnalyticDB(ADB)凭借其强大的数据处理能力和亚秒级的查询响应时间,已经在多个行业和业务场景中得到了广泛应用。本文将从个人的角度出发,分享多个成功案例,展示AnalyticDB如何助力企业在广告投放效果分析、用户行为追踪、财务报表生成等领域实现高效的数据处理与洞察发现。
1043 0
【Azure 环境】连接到微软云Azure中国区 By VS 2019, VS Code, Powershell
【Azure 环境】连接到微软云Azure中国区 By VS 2019, VS Code, Powershell
373 0
【Azure 环境】连接到微软云Azure中国区 By VS 2019, VS Code, Powershell