开源人体动作识别OpenPose的安装与测试

简介: 人体关键点检测对于描述人体姿态,预测人体行为至关重要。因此人体关键点检测是诸多计算机视觉任务的基础。其在动作分类,异常行为检测,以及人机交互等领域有着很广阔的应用前景,是计算机视觉领域中一个既具有研究价值、同时又极具挑战性的热门课题。

人体关键点检测对于描述人体姿态,预测人体行为至关重要。因此人体关键点检测是诸多计算机视觉任务的基础。其在动作分类,异常行为检测,以及人机交互等领域有着很广阔的应用前景,是计算机视觉领域中一个既具有研究价值、同时又极具挑战性的热门课题。图展示了开源的人体关键点识别demo。
image
image

相关数据集

LSP(Leeds Sports Pose Dataset):单人人体关键点检测数据集,关键点个数为14,样本数2K,在目前的研究中基本上被弃用;
FLIC(Frames Labeled In Cinema):单人人体关键点检测数据集,关键点个数为9,样本数2W,在目前的研究中基本上被弃用;
MPII(MPII Human Pose Dataset):单人/多人人体关键点检测数据集,关键点个数为16,样本数25K;
MSCOCO:多人人体关键点检测数据集,关键点个数为17,样本数多于30W,目前的相关研究基本上还需要在该数据集上进行验证;
AI Challenger:多人人体关键点检测数据集,关键点个数为14,样本数约38W,竞赛数据集;
PoseTrack:最新的关于人体骨骼关键点的数据集,多人人体关键点跟踪数据集,包含单帧关键点检测、多帧关键点检测、多人关键点跟踪三个人物,多于500个视频序列,帧数超过20K,关键点个数为15。

安装与实践

pytorch-openpose下载pytorch版本的源码之后,运行demo.py文件

body_estimation = Body('model/body_pose_model.pth')
hand_estimation = Hand('model/hand_pose_model.pth')

test_image = 'images/demo.jpg'
oriImg = cv2.imread(test_image)  # B,G,R order
candidate, subset = body_estimation(oriImg)
canvas = copy.deepcopy(oriImg)
canvas = util.draw_bodypose(canvas, candidate, subset)
# detect hand
hands_list = util.handDetect(candidate, subset, oriImg)

all_hand_peaks = []
for x, y, w, is_left in hands_list:
    # cv2.rectangle(canvas, (x, y), (x+w, y+w), (0, 255, 0), 2, lineType=cv2.LINE_AA)
    # cv2.putText(canvas, 'left' if is_left else 'right', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

    # if is_left:
        # plt.imshow(oriImg[y:y+w, x:x+w, :][:, :, [2, 1, 0]])
        # plt.show()
    peaks = hand_estimation(oriImg[y:y+w, x:x+w, :])
    peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], peaks[:, 0]+x)
    peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
    # else:
    #     peaks = hand_estimation(cv2.flip(oriImg[y:y+w, x:x+w, :], 1))
    #     peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], w-peaks[:, 0]-1+x)
    #     peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
    #     print(peaks)
    all_hand_peaks.append(peaks)

canvas = util.draw_handpose(canvas, all_hand_peaks)

plt.imshow(canvas[:, :, [2, 1, 0]])
plt.axis('off')
plt.show()

pth文件下载地址

检测效果

image
image

目录
相关文章
|
1月前
|
Linux 网络安全 iOS开发
Metasploit Framework 6.4.95 (macOS, Linux, Windows) - 开源渗透测试框架
Metasploit Framework 6.4.95 (macOS, Linux, Windows) - 开源渗透测试框架
180 1
Metasploit Framework 6.4.95 (macOS, Linux, Windows) - 开源渗透测试框架
|
2月前
|
Linux 网络安全 iOS开发
Metasploit Framework 6.4.90 (macOS, Linux, Windows) - 开源渗透测试框架
Metasploit Framework 6.4.90 (macOS, Linux, Windows) - 开源渗透测试框架
377 1
Metasploit Framework 6.4.90 (macOS, Linux, Windows) - 开源渗透测试框架
|
2月前
|
安全 Linux 网络安全
Metasploit Framework 6.4.88 (macOS, Linux, Windows) - 开源渗透测试框架
Metasploit Framework 6.4.88 (macOS, Linux, Windows) - 开源渗透测试框架
545 0
|
4月前
|
人工智能 自然语言处理 监控
一文看懂开源Coze如何让测试效率飙升
Coze是测试工程师的AI引擎,支持私有部署与零代码测试,提升效率并降低成本。覆盖智能用例生成、数字员工值守、缺陷分析、多模态报告与安全测试五大场景,助力测试智能化转型。
|
6月前
|
Linux 网络安全 iOS开发
Metasploit Framework 6.4.63 (macOS, Linux, Windows) - 开源渗透测试框架
Metasploit Framework 6.4.63 (macOS, Linux, Windows) - 开源渗透测试框架
196 4
Metasploit Framework 6.4.63 (macOS, Linux, Windows) - 开源渗透测试框架
|
7月前
|
人工智能 自然语言处理 JavaScript
测试工程师要失业?Magnitude:开源AI Agent驱动的端到端测试框架,让Web测试更智能,自动完善测试用例!
Magnitude是一个基于视觉AI代理的开源端到端测试框架,通过自然语言构建测试用例,结合推理代理和视觉代理实现智能化的Web应用测试,支持本地运行和CI/CD集成。
919 15
测试工程师要失业?Magnitude:开源AI Agent驱动的端到端测试框架,让Web测试更智能,自动完善测试用例!
|
7月前
|
人工智能 自然语言处理 测试技术
自然语言生成代码一键搞定!Codex CLI:OpenAI开源终端AI编程助手,代码重构+测试全自动
Codex CLI是OpenAI推出的轻量级AI编程智能体,基于自然语言指令帮助开发者高效生成代码、执行文件操作和进行版本控制,支持代码生成、重构、测试及数据库迁移等功能。
1498 0
自然语言生成代码一键搞定!Codex CLI:OpenAI开源终端AI编程助手,代码重构+测试全自动
|
7月前
|
Linux 网络安全 iOS开发
Metasploit Framework 6.4.55 (macOS, Linux, Windows) - 开源渗透测试框架
Metasploit Framework 6.4.55 (macOS, Linux, Windows) - 开源渗透测试框架
220 0
Metasploit Framework 6.4.55 (macOS, Linux, Windows) - 开源渗透测试框架
|
7月前
|
SQL 缓存 关系型数据库
MySQL8.4 Enterprise安装Firewall及测试
MySQL8.4 Enterprise安装Firewall及测试
238 0
|
10月前
|
数据可视化 前端开发 测试技术
接口测试新选择:Postman替代方案全解析
在软件开发中,接口测试工具至关重要。Postman长期占据主导地位,但随着国产工具的崛起,越来越多开发者转向更适合中国市场的替代方案——Apifox。它不仅支持中英文切换、完全免费不限人数,还具备强大的可视化操作、自动生成文档和API调试功能,极大简化了开发流程。

热门文章

最新文章