达摩院最新AI技术助力天猫双11,提供接近真人的语音交互体验

简介: 11月8日,记者了解到,阿里巴巴达摩院机器智能实验室最新研究成果——KAN-TTS将首次大规模应用于今年天猫双11,基于该技术,菜鸟热线机器人、语音机器人小蜜以及天猫精灵将为全球消费者提供接近真人的语音交互体验。

11月8日,记者了解到,阿里巴巴达摩院机器智能实验室最新研究成果——KAN-TTS将首次大规模应用于今年天猫双11,基于该技术,菜鸟热线机器人、语音机器人小蜜以及天猫精灵将为全球消费者提供接近真人的语音交互体验。

让机器开口说话是人工智能的基础技术之一,最早可追溯到1960年TTS(Text To Speech)技术的诞生,但要让机器发出生动逼真的声音一直都是业界的难题,据了解,传统语音合成技术需要海量文本和音频信息,合成的语音与原始音频的接近程度仅为85%到90%之间。

image

今年7月,达摩院发布新一代语音合成技术KAN-TTS,首次将该数字提高到97%以上。这被认为是入选MIT Technology Review 2019年“全球十大突破性技术”后,阿里巴巴语音技术实力的又一次跨越式提升。

基于迁移学习以及多种新型算法模型,KAN-TTS可根据特定发音人的风格快速生成高度相似的语音,并且大幅降低语音合成的门槛,手机录音十分钟,机器即可通过算法完成声音的模仿。

过去数月,KAN-TTS技术已实现了主流场景风格声音的全覆盖,可针对通用场景、客服场景、童声场景、英文场景和方言场景,提供 41种高品质的声音,例如温柔、甜蜜、严厉等风格。据达摩院专家透露,团队还计划用该技术来帮助视障和语言障碍人士实现无障碍沟通。

达摩院成立两年以来,阿里巴巴在视觉、语音以及自然语言处理等领域已创下了多项世界纪录,并且跃升为中国最大的人工智能公司。今年的杭州云栖大会上,阿里巴巴表示,阿里AI每天调用超1万亿次,服务全球10亿人,日处理图像10亿张、视频120万小时、语音55万小时及自然语言5千亿句。

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
27 1
|
10天前
|
存储 XML 人工智能
深度解读AI在数字档案馆中的创新应用:高效识别与智能档案管理
基于OCR技术的纸质档案电子化方案,通过先进的AI能力平台,实现手写、打印、复古文档等多格式高效识别与智能归档。该方案大幅提升了档案管理效率,确保数据安全与隐私,为档案馆提供全面、智能化的电子化管理解决方案。
100 48
|
6天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
31 10
|
6天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
10天前
|
人工智能 安全 测试技术
探索AI在软件开发中的应用:提升开发效率与质量
【10月更文挑战第31天】在快速发展的科技时代,人工智能(AI)已成为软件开发领域的重要组成部分。本文探讨了AI在代码生成、缺陷预测、自动化测试、性能优化和CI/CD中的应用,以及这些应用如何提升开发效率和产品质量。同时,文章也讨论了数据隐私、模型可解释性和技术更新等挑战。
|
5天前
|
存储 人工智能 固态存储
如何应对生成式AI和大模型应用带来的存储挑战
如何应对生成式AI和大模型应用带来的存储挑战
|
7天前
|
传感器 人工智能 算法
AI在农业中的应用:精准农业的发展
随着科技的发展,人工智能(AI)在农业领域的应用日益广泛,尤其在精准农业方面取得了显著成效。精准农业通过GPS、GIS、遥感技术和自动化技术,实现对农业生产过程的精确监测和控制,提高产量和品质,降低成本和环境影响。AI在作物生长监测、气候预测、智能农机、农产品品质检测和智能灌溉等方面发挥重要作用,推动农业向智能化、高效化和可持续化方向发展。尽管面临技术集成、数据共享等挑战,但未来前景广阔。