达摩院最新AI技术助力天猫双11,提供接近真人的语音交互体验

简介: 11月8日,记者了解到,阿里巴巴达摩院机器智能实验室最新研究成果——KAN-TTS将首次大规模应用于今年天猫双11,基于该技术,菜鸟热线机器人、语音机器人小蜜以及天猫精灵将为全球消费者提供接近真人的语音交互体验。

11月8日,记者了解到,阿里巴巴达摩院机器智能实验室最新研究成果——KAN-TTS将首次大规模应用于今年天猫双11,基于该技术,菜鸟热线机器人、语音机器人小蜜以及天猫精灵将为全球消费者提供接近真人的语音交互体验。

让机器开口说话是人工智能的基础技术之一,最早可追溯到1960年TTS(Text To Speech)技术的诞生,但要让机器发出生动逼真的声音一直都是业界的难题,据了解,传统语音合成技术需要海量文本和音频信息,合成的语音与原始音频的接近程度仅为85%到90%之间。

image

今年7月,达摩院发布新一代语音合成技术KAN-TTS,首次将该数字提高到97%以上。这被认为是入选MIT Technology Review 2019年“全球十大突破性技术”后,阿里巴巴语音技术实力的又一次跨越式提升。

基于迁移学习以及多种新型算法模型,KAN-TTS可根据特定发音人的风格快速生成高度相似的语音,并且大幅降低语音合成的门槛,手机录音十分钟,机器即可通过算法完成声音的模仿。

过去数月,KAN-TTS技术已实现了主流场景风格声音的全覆盖,可针对通用场景、客服场景、童声场景、英文场景和方言场景,提供 41种高品质的声音,例如温柔、甜蜜、严厉等风格。据达摩院专家透露,团队还计划用该技术来帮助视障和语言障碍人士实现无障碍沟通。

达摩院成立两年以来,阿里巴巴在视觉、语音以及自然语言处理等领域已创下了多项世界纪录,并且跃升为中国最大的人工智能公司。今年的杭州云栖大会上,阿里巴巴表示,阿里AI每天调用超1万亿次,服务全球10亿人,日处理图像10亿张、视频120万小时、语音55万小时及自然语言5千亿句。

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
目录
打赏
0
0
0
0
4956
分享
相关文章
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
308 29
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
674 34
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
352 22
3个月圈粉百万,这个AI应用在海外火了
不知道大家还记不记得,我之前推荐过一个叫 Agnes 的 AI 应用,也是当时在 WAIC 了解到的。
237 1
构建企业级 AI 应用:为什么我们需要 AI 中间件?
阿里云发布AI中间件,涵盖AgentScope-Java、AI MQ、Higress、Nacos及可观测体系,全面开源核心技术,助力企业构建分布式多Agent架构,推动AI原生应用规模化落地。
171 0
构建企业级 AI 应用:为什么我们需要 AI 中间件?
Java与AI驱动区块链:构建智能合约与去中心化AI应用
区块链技术和人工智能的融合正在开创去中心化智能应用的新纪元。本文深入探讨如何使用Java构建AI驱动的区块链应用,涵盖智能合约开发、去中心化AI模型训练与推理、数据隐私保护以及通证经济激励等核心主题。我们将完整展示从区块链基础集成、智能合约编写、AI模型上链到去中心化应用(DApp)开发的全流程,为构建下一代可信、透明的智能去中心化系统提供完整技术方案。
193 3
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
函数计算进化之路:AI 应用运行时的状态剖析
AI应用正从“请求-响应”迈向“对话式智能体”,推动Serverless架构向“会话原生”演进。阿里云函数计算引领云上 AI 应用 Serverless 运行时技术创新,实现性能、隔离与成本平衡,开启Serverless AI新范式。
355 12
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
311 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问