不可不学Numpy,带你快速撸Numpy代码,(Python学习教程)一遍过

简介: 不可不学Numpy,带你快速撸Numpy代码,(Python学习教程)一遍过

我们一起来学习Python数据分析的工具学习阶段,包括Numpy,Pandas以及Matplotlib,它们是python进行科学计算,数据处理以及可视化的重要库,在以后的数据分析路上会经常用到,所以一定要掌握,并且还要熟练!今天的Python学习教程先从Numpy开始!

本文目标

初识Numpy

  • ndarray的增删改查
  • ndarray切片与筛选
  • ndarray运算与排序

NumPy 简介

NumPy 是 Numerical Python 的简称,它是 Python 中的科学计算基本软件包。NumPy 为 Python 提供了大量数学库,使我们能够高效地进行数字计算。更多可点击Numpy官网查看。

其实在前面的Python学习教程中就有跟大家讲过Numpy!

关于Numpy需要知道的几点:

  • NumPy 数组在创建时有固定的大小,不同于Python列表(可以动态增长)。更改ndarray的大小将创建一个新的数组并删除原始数据。
  • NumPy 数组中的元素都需要具有相同的数据类型,因此在存储器中将具有相同的大小。数组的元素如果也是数组(可以是 Python 的原生 array,也可以是 ndarray)的情况下,则构成了多维数组。
  • NumPy 数组便于对大量数据进行高级数学和其他类型的操作。通常,这样的操作比使用Python的内置序列可能更有效和更少的代码执行。

所以,Numpy 的核心是ndarray对象,这个对象封装了同质数据类型的n维数组。起名ndarray 的原因就是因为是 n-dimension-array 的简写。接下来本节所有的课程都是围绕着ndarray来讲的,理论知识较少,代码量较多,所以大家在学习的时候,多自己动动手,尝试自己去运行一下代码。
_

不可不学Numpy,带你快速撸Numpy代码,(Python学习教程)一遍过
创建ndarray

由python list创建
由numpy内置函数创建
访问、删除、增加ndarray中的元素

这里主要是提供了一些访问、更改或增加ndarray中某一元素的基础方法。

访问&更改

类似于访问python list中元素的方式,按照元素的index进行访问或更改。

删除

可使用np.delete(ndarray, elements, axis)函数进行删除操作。

这里需要注意的是axis这个参数,在2维数据中,axis = 0表示选择行,axis = 1表示选择列,但不能机械的认为0就表示行,1就表示列,注意前提2维数据中。

在三维数据中,axis = 0表示组,1表示行,2表示列。这是为什么呢?提示一下,三位数组的shape中组、行和列是怎样排序的?
所以,axis的赋值一定要考虑数组的shape。

再有一点需要注意的是,如果你想让原数据保留删除后的结果,需要重新赋值一下才可以。

增加

往ndarray中增加元素的办法跟python list也很类似,常用的有两种:

一种是添加(append),就是将新增的元素添加到ndarray的尾部
语法为:np.append(ndarray, elements, axis)
参数和delete函数一致,用法也一致,这里不再赘述
一种是插入(insert),可以让新增元素插入到指定位置
语法为:np.insert(ndarray, index, elements, axis)
参数中就多了一个index,指示的是插入新元素的位置。
这里值得注意的是,不论是append还是insert,在往多维数组中插入元素时,一定要注意对应axis上的shape要一致。再一个就是,和delete一样,如果你想要更改原数据,需要重新赋值。

切片和筛选

ndarray切片

前面学了选择ndarray中的某个元素的方法,这里我们学习获取ndarray子集的方法——切片。

对于切片大家并不陌生,在list里面我们也接触过切片,一维的ndarray切片与list无异。需要注意的是,就是理解2维及多维ndarray切片。

2维矩阵切片
这里可以看出,我们筛选了a矩阵中前三列的所有行,这是如何实现的呢?

切片的第一个元素:表示的是选择所有行,第二个元素:-1表示的是从第0列至最后一列(不包含),所以结果如上所示。

再看一个例子:

筛选的是第2-3行的所有列。

一个常用的切片
以列的形式获取最后一列数据:

以一维数组的形式获取最后一列数据:

上面两种方法经常会用到,前者的shape为(4,1),后者为(4,)。

ndarray筛选

选择ndarray的对角线
所用函数为np.diag(ndarray, k=N),其中参数k的取值决定了按照哪一条对角线选择数据。

默认k = 0,取主对角线;

k = 1时,取主对角线上面1行的元素;

k = -1时,取主对角线下面1行的元素。

思考:这个函数只能选择主对角线上的元素,那如果想要获取副对角线上的元素呢?

尝试自己搜索一下关键词numpy opposite diagonal寻找答案。

不建议你直接点getting the opposite diagonal of a numpy array。

提取ndarray中的唯一值
所用函数为np.unique(ndarray),注意unique也可以添加参数axis来控制评判唯一值的轴方向,不好理解可以看示例:

通过布尔运算筛选
这里在中括号中添加筛选条件,当该条件的结果为True时(即满足条件时),返回该值。

这里需要注意的是,当输入多个筛选条件时,&表示与,|表示或,~表示非。

运算与排序

ndarray运算

集合运算
算术运算
我们可以通过+、-、*、/或np.add、np.substract、np.multiply 、np.divide来对两个矩阵进行元素级的加减乘除运算,因为是元素级的运算,所以两个矩阵的shape必须要一致或者是可广播(Broadcast)。

这里所谓的可广播,就是指虽然A和B两个矩阵的shape不一致,但是A可以拆分为整数个与B具有相同shape的矩阵,这样在进行元素级别的运算时,就会先将A进行拆分,然后与B进行运算,结果再组合一起就可以。这里的A就是“可广播”矩阵。

上面涉及到的乘法是元素对应相乘,也就是点乘,那矩阵的叉乘呢?可以了解下numpy.matmul函数。
ndarray排序

我们使用np.sort()和ndarray.sort()来对ndarray进行排序。

相同的是:

二者都可以使用参数axis来决定依照哪个轴进行排序,axis = 0时按照列排序,axis = 1时按照行排序;

不同的是:

np.sort()不会更改原数组;ndarray.sort()会更改原数组。

更多的Python学习教程会继续为大家更新!大家哪里有不清楚的地方可以留言或者私信!

相关文章
|
14天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
17天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
13天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
21 1
|
18天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
14天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
18天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
28 5
|
16天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
35 2
|
18天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
53 4
|
20天前
|
缓存 开发者 Python
探索Python中的装饰器:简化和增强你的代码
【10月更文挑战第32天】 在编程的世界中,简洁和效率是永恒的追求。Python提供了一种强大工具——装饰器,它允许我们以声明式的方式修改函数的行为。本文将深入探讨装饰器的概念、用法及其在实际应用中的优势。通过实际代码示例,我们不仅理解装饰器的工作方式,还能学会如何自定义装饰器来满足特定需求。无论你是初学者还是有经验的开发者,这篇文章都将为你揭示装饰器的神秘面纱,并展示如何利用它们简化和增强你的代码库。
|
18天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
26 2
下一篇
无影云桌面