机器学习算法—SVM支持向量机算法原理及阿里云PAI平台算法模块参数说明

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 阿里云PAI平台提供了大量已经封装完成可以直接使用的机器学习算法模块,本文说明SVM支持向量机算法的原理并在原理的基础上说明PAI平台SVM支持向量机模块中参数设置的意义,根据原理介绍算法的优点和缺点

概述:

SVM支持向量机是最常用的机器学习分类算法之一,属于有监督学习。这种算法的本质是对数据进行二元线性分类,这种特点和其算法原理有直接关系,通俗来说SVM支持向量机在单一计算周期中只能将数据分成两类并且分隔的手段都表现为线性特征,如对于二维空间内的分隔为线,三维空间内为平面,更高维度的称为超平面。

算法原理:

1、通过散点图观察数据的分布情况,因为是一个二分类问题所以例子中的数据只有蓝色和红色两个类别
image.png
2、对数据进行二分类的话可以发现能够找到无数种分隔方式
image.png
image.png
image.png
3、既然分隔方式有无数种,SVM支持向量机算法的意义就在于通过计算来确定一个最优化的分隔方式,根据SVM算法原理中分隔的手段都表现为线性的特点,二维空间的分隔为线、三维空间的分隔为平面、更高维度的为超平面(不可见),因此算法在计算分隔方式的时候本质就是计算最优的分隔线、分隔平面和分隔超平面,以二维空间为例,计算出的分割线需要处于以下位置
image.png
4、以二维空间为例,如果分隔线处在最合适的位置,表现出的特征应该是其距离两个类别中最近的点的距离相等,即L1=L2
image.png
5、距离分隔线最近的两类中的点,即称为支持向量,如图中绿色标记的两个点即为本例子中的支持向量,可以得出结论:分隔线的确定只与支持向量有关,同其余样本无关
image.png
6、图中两条虚线间的距离为L1+L2,由于分隔线的分隔结果需要与两个支持向量的距离相等即做到L1=L2,因此计算的目的就是求出(L1+L2)/2最大值的过程
7、将分隔线以及更高维度的分隔平面和分隔超平面函数化,即分隔线的方程为Y=aX+b,需要根据第6步的原理计算出a和b以确定分隔线的方程
8、升维到平面和超平面的函数即为Y=WT*X+b,其中T是指W矩阵的转置,同理需要根据第6步的原理计算出WT和b来确定分隔平面和分隔超平面的方程
9、为了方便计算,二分类中将两个类别分别称为正例和负例,假设正例的输出值为1,负例的输出值为-1,则最佳的分隔线、分隔平面和分隔超平面的输出值为0如图所示
image.png
10、实际的数据分布不会像例子中那样能够方便的进行分类,如下图的数据无法在二维平面内进行线性分隔
image.png
11、SVM算法在这种情况下采用核函数的方法进行分类,核函数的选择有很多种,本质思维是一样的,就是将空间进行升维,原空间即本例子中的二维空间称为输入空间,升维后的空间称为特征空间,将输入空间内的数据映射到特征空间,使数据在高维度的空间内有分类的可能,在本例子中因为数据已经无法在二维空间内进行线性分隔,因此通过核函数将数据样本映射到三维空间内进行分类,如图所示
image.png

阿里云PAI平台SVM模块参数选择重点:

1、PAI平台中的SVM模块只支持二分类
2、PAI平台中的SVM模块无法使用核函数,即无法将数据映射到高维度空间进行分类
3、最重要的参数有以下几个:
positiveLabel:正例的值,是一个可选的值,如果不选择则在label的取值中随机选择一个,因为SVM只进行二分类,当两类样本的差异较大时,选择其中一个值作为正例的值,或者称为基准值能够提高分类的准确性。
positiveCost:正例权重值,即正例惩罚因子。惩罚因子可以根据需要选择所有大于0的数,越大表示整个过程中对于总误差的重视程度越高,对于减小误差的要求越高,甚至不惜使间隔减小。通俗的说法就是惩罚因子越大则对误差的容忍度越小,追求的是分类的准确性,当惩罚因子趋向于无穷时代表对误差没有任何容忍。当惩罚因子趋于0时,则不再关注分类是否正确,只要求间隔越大越好,那么算法将无法得到有意义的解且算法不会收敛,因为分类如果不需要任何准确性的话就根本无法确定间隔。
negativeCost:负例权重值,即负例惩罚因子,其意义与正例权重值一样。
epsilon:收敛系数,同样表示的是对分类误差的容忍程度,阿里云PAI平台SVM模块的默认收敛系数是0.001,代表1000个数据样本中最多只能容许有1个数据样本分类错误。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
2月前
|
人工智能 调度 芯片
PAI训练服务:云上大模型训练新篇章
本文介绍了通用AI时代下的新训练方法及PAI平台的优化。随着大模型时代的到来,算力需求激增,硬件和网络通信成为瓶颈。PAI平台通过自动容错、3D健康检测等技术确保训练稳定性;通过资源配额、智能调度等提高性价比;并推出PAI-TorchAcc和PAI-ChatLearn两大引擎,分别实现高效训练加速和灵活的对齐训练,显著提升训练性能与效果。这些改进解决了大规模AI训练中的关键问题,提升了效率和稳定性。
|
3月前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
316 22
|
2月前
|
人工智能 容灾 Serverless
AI推理新纪元,PAI全球化模型推理服务的创新与实践
本次分享主题为“AI推理新纪元,PAI全球化模型推理服务的创新与实践”,由阿里云高级产品经理李林杨主讲。内容涵盖生成式AI时代推理服务的变化与挑战、play IM核心引擎的优势及ES专属网关的应用。通过LM智能路由、多模态异步生成等技术,PAI平台实现了30%以上的成本降低和显著性能提升,确保全球客户的业务稳定运行并支持异地容灾,目前已覆盖16个地域,拥有10万张显卡的推理集群。
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
4月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
7月前
|
机器学习/深度学习 算法
【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
支持向量机(SVM)的介绍,包括其基本概念、与逻辑回归(LR)和决策树(DT)的直观和理论对比,如何选择这些算法,SVM为何采用间隔最大化,求解SVM时为何转换为对偶问题,核函数的引入原因,以及SVM对缺失数据的敏感性。
133 3
|
7月前
|
机器学习/深度学习 运维 算法
深入探索机器学习中的支持向量机(SVM)算法:原理、应用与Python代码示例全面解析
【8月更文挑战第6天】在机器学习领域,支持向量机(SVM)犹如璀璨明珠。它是一种强大的监督学习算法,在分类、回归及异常检测中表现出色。SVM通过在高维空间寻找最大间隔超平面来分隔不同类别的数据,提升模型泛化能力。为处理非线性问题,引入了核函数将数据映射到高维空间。SVM在文本分类、图像识别等多个领域有广泛应用,展现出高度灵活性和适应性。
294 2
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
基于PAI-QuickStart搭建一站式模型训练服务体验
【8月更文挑战第5天】基于PAI-QuickStart搭建一站式模型训练服务体验
239 0
|
10月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
294 14
|
10月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)

热门文章

最新文章