数据中台的OneModel体系与经典维度建模理论有何关系?

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 作者:柯根 更多内容详见数据中台官网 https://dp.alibaba.com维度建模经典理论维度建模是数据仓库建设中的一种数据建模方法,将数据结构化的逻辑设计方法,它将客观世界划分为度量和上下文,Kimball最先提出这一概念。

作者:柯根 更多内容详见数据中台官网 https://dp.alibaba.com
维度建模经典理论
维度建模是数据仓库建设中的一种数据建模方法,将数据结构化的逻辑设计方法,它将客观世界划分为度量和上下文,Kimball最先提出这一概念。
其最简单的描述就是,按照事实表,维度表来构建数据仓库,数据集市。这种方法的最被人广泛知晓的名字就是星型模式。实体关系模型(E-R)建模通常用于为单位的所有进程创建一个复杂的模型。这种方法已被证实在创建高效的联机事务处理 (OLTP) 系统方面很有效。相反,维度建模针对零散的业务进程创建个别的模型。例如,销售信息可以创建为一个模型,库存可以创建为另一个模型,而客户帐户也可以创建为另一个模型。每个模型捕获事实数据表中的事实,以及那些事实在链接到事实数据表的维度表中的特性。由这些排列产生的架构称为星型模式或雪花模式,已被证实在数据仓库设计中很有效。
image

图1:典型星型模型架构

维度建模实践升级--OneModel体系
经典维度建模的方法论为我们OneModel体系的构建提供了启发和基础,同时我们在数据中台的过程中,我们带着批判和产品化的思维,对该方法论根据基于海量数据实战经验的演进和升级,创造出了符合企业数据中台构建的OneModel方法论和产品化体系。

  • 规范定义
    经典数据仓库有很多关于数据模型的做法,其中不乏优美的数据模型设计,但模型设计前无数据规范定义,模型设计后不能确保开发严格按照模型设计进行,为非闭环的单点模型设计。

在业界中常用数据字典文档的方式维护标准规范定义,数据字典是在数据以及开发完成之后,为了业务能够读懂而增加的数据整理和标识的工作,以字典方式呈现。其意义更多在于帮助用户理解已有数据的含义和算法,但此时数据已经产生,无法规避二义性等形成的数据使用困扰,且后期维护的人力成本颇高,难以为续。
OneModel方法论保障了数据唯一性的数据域、业务过程,以及在数据域、业务过程之下的指标、实体属性等的结构性封装、命名和定义。
数据规范定义是在开发之前,以业务的视角进行数据的统一和标准定义,确保计算口径一致、算法一致、命名一致,后续的数据模型设计和ETL开发都是在此基础上进行的。
image

图2:OneModel规范定义

设计即开发
将割裂的数据规范定义、数据模型设计、ETL开发连接在一期,实现“设计即开发”。将数据规范定义从工具层面的数据命名+结构化抽象定义合二为一,并与数据模型设计连接,进而直接支撑ETL开发。当数据规范定义完成之后,每一个指标都可以根据结构化命名规则和计算逻辑快速映射到对应的物理表中。
image

图3:OneModel方法论解决设计与开发脱节的示意图

所建即所得
只要某个指标能够被规范定义,针对该指标的代码即可自动化生成,而一系列经过规范定义的指标则会根据相同计算粒度,聚集到若干物理表或逻辑表中,这样形成的物理表或逻辑表,其全部代码和自动化生成。对于中间生成过程不必关心,因为这是系统内部的智能黑盒要以智能化的方式来解决的。并且智能黑盒不仅实现代码自动化生成,还关心优化生成代码及其任务调度所对应的计算逻辑。
下图为智能黑盒解决开发人员只需要基于业务逻辑建模,通过智能黑盒能自动生成、优化代码:
图4:智能黑盒逻辑框架
下图为数据的使用从逻辑表到物理表的全面升级,使得数据的设计和使用都完全基于业务进行逻辑建模,加快了建设和使用的效率:
image

图5:逻辑表vs.物理表

产品化实现
OneModel体系不仅有方法论,还有规范、工具型数据产品等,具体包括:规范化数据建模,特别关注数据规范定义、数据模型设计和ETL开发等全流程;落地和承载规范化数据建模的规范化研发工具;规范化建模产生的所有分层数据模型;所有数据在面对应用时都会被监控和调度,且对上线、下线调优监控会反馈到规范化数据建模中。
这四大部分形成有机闭环。OneModel体系关键指导意义和执行点是规范化数据建模,即数据规范定义、数据模型设计和ETL开发。在ETL开发之前严格要求规范定义和数据模型设计,虽有借鉴和部分继承经典维度建模的做法,但不同于一般意义上的事后“数据字典”和单点“模型设计”。
image

图6:云上数据中台产品Dataphin整体功能架构

结语:
阿里巴巴数据中台团队,致力于输出阿里云数据智能的最佳实践,助力每个企业建设自己的数据中台,进而共同实现新时代下的智能商业!
阿里巴巴数据中台解决方案,核心产品:
Dataphin,以阿里巴巴大数据核心方法论OneData为内核驱动,提供一站式数据构建与管理能力;
Quick BI,集阿里巴巴数据分析经验沉淀,提供一站式数据分析与展现能力;
Quick Audience,集阿里巴巴消费者洞察及营销经验,提供一站式人群圈选、洞察及营销投放能力,连接阿里巴巴商业,实现用户增长。
欢迎志同道合者一起成长!更多内容详见数据中台官网 https://dp.alibaba.com

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
存储 搜索推荐 数据可视化
谈谈数据中台数据分层建模和数据指标体系建设
数据资产是数据管理和应用领域经常被提到的概念,数据中台的目的就是将数据转变为数据资产。
谈谈数据中台数据分层建模和数据指标体系建设
|
供应链 BI
数据中台公共层建设--多维度组合下的数据模型设计
对于数据中台指标而言,维度联合组合的情况越多,最终实现的指标越复杂。本文考虑为了满足多个维度任意组合下的指标,数据中台cdm公共层的事实表与维度表应该如何设计。
数据中台公共层建设--多维度组合下的数据模型设计
|
存储 数据采集 大数据
数据中台模型设计系列(一):维度建模初探
本文从几个常见概念入手,介绍模型设计与它们的关系,在列举当前企业模型设计的建设方法,并重点介绍“维度建模”。
3746 0
数据中台模型设计系列(一):维度建模初探
|
机器学习/深度学习 数据采集 存储
袋鼠云数据中台专栏2.0 | 数据中台综述:三个维度看数据中台
一、关于数据中台的9个名词 数据中台是什么,当前有很多解释,但是它一定不是哈姆雷特。 新兴的事物总会被各种解读,但是当人们足够熟悉了以后,总会有一个公允的定义得到广泛的认可和接受。这个过程中,最可以用于度量的便是「功能定义」与「业务价值」。
3761 0
|
6月前
|
Shell Android开发
Android系统 adb shell push/pull 禁止特定文件
Android系统 adb shell push/pull 禁止特定文件
512 1
|
6月前
|
Android开发 Python
Python封装ADB获取Android设备wifi地址的方法
Python封装ADB获取Android设备wifi地址的方法
145 0
|
开发工具 Android开发
Mac 安卓(Android) 配置adb路径
Mac 安卓(Android) 配置adb路径
791 0
|
3月前
|
Shell Linux 开发工具
"开发者的救星:揭秘如何用adb神器征服Android设备,开启高效调试之旅!"
【8月更文挑战第20天】Android Debug Bridge (adb) 是 Android 开发者必备工具,用于实现计算机与 Android 设备间通讯,执行调试及命令操作。adb 提供了丰富的命令行接口,覆盖从基础设备管理到复杂系统操作的需求。本文详细介绍 adb 的安装配置流程,并列举实用命令示例,包括设备连接管理、应用安装调试、文件系统访问等基础功能,以及端口转发、日志查看等高级技巧。此外,还提供了常见问题的故障排除指南,帮助开发者快速解决问题。掌握 adb 将极大提升 Android 开发效率,助力项目顺利推进。
69 0
|
6月前
|
Shell Android开发
ADB更改Android设备屏幕显示方向
ADB更改Android设备屏幕显示方向
321 5
|
6月前
|
Java Android开发
Android 对adb命令的拦截
Android 对adb命令的拦截
91 2