标签
PostgreSQL , 10.0 , llvm , jit , Faster Expression Evaluation Framework
背景
PostgreSQL 10.0有可能会融合JIT,向量计算等技术,提供一个通用的,便于高效协作,提升OLAP性能的一个开发框架。
虽然目前社区有朋友已经提供了LLVM和向量计算的插件,很显然社区是想在内核中直接整合这些计算的。加油PostgreSQL
《分析加速引擎黑科技 - LLVM、列存、多核并行、算子复用 大联姻 - 一起来开启PostgreSQL的百宝箱》
《PostgreSQL 向量化执行插件(瓦片式实现) 10x提速OLAP》
Hi Everyone,
TL;DR: Making things faster. Architectural evalation.
as some of you might be aware I've been working on making execution of
larger queries in postgresl faster. While working on "batched execution"
I came to the conclusion that, while necessary, isn't currently showing
a large benefit because expression evaluation and tuple deforming are
massive bottlenecks.
I'm posting a quite massive series of WIP patches here, to get some
feedback.
Tuple deforming is slow because of two reasons:
1) It's the first thing that accesses tuples, i.e. it'll often incur
cache misses. That's partially fundamental, but also partially can be
addressed, e.g. through changing the access order in heap as in [1].
2) Tuple deforming has a lot of unpredicatable branches, because it has
to cope with various types of fields. We e.g. perform alignment in a
lot of unneeded cases, do null checks for NOT NULL columns et al.
I tried to address 2) by changing the C implementation. That brings some
measurable speedups, but it's not huge. A bigger speedup is making
slot_getattr, slot_getsomeattrs, slot_getallattrs very trivial wrappers;
but it's still not huge. Finally I turned to just-in-time (JIT)
compiling the code for tuple deforming. That doesn't save the cost of
1), but it gets rid of most of 2) (from ~15% to ~3% in TPCH-Q01). The
first part is done in 0008, the JITing in 0012.
Expression evaluation and projection is another major bottleneck.
1) Our recursive expression evaluation puts a *lot* of pressure on the
stack.
2) There's a lot of indirect function calls when recursing to other
expression nodes. These are hard to predict, because the same node
type (say ExecEvalAnd()) is used in different parts of an expression
tree, and invokes different sub-nodes.
3) The function calls to operators and other functions are hard to
predict, leading to a significant number of pipeline stalls.
4) There's a fair amount of pg_list.h list style iteration going on,
those are cache and pipeline inefficient.
After some experimenting I came to the conclusion that the recursive
processing is a fundamental impediment to making this faster. I've
converted (0006) expression processing and projection into an opcode
dispatch based interpreter. That yields, especially for complex
expressions and larger projections a significant speedup in itself. But
similarly to the deforming, expression evaluation remains a bottleneck
after that, primarily because there's still a lot of unpredictable jump
and calls, and because loads/stores have to be complex
(e.g. ExprContext->ecxt_innertuple->tts_values[i]/tts_isnull[i] for a
single scalar var evaluation). Using the opcode based representation
of expression evaluation (as it's nearly linear, and has done a lot of
the lookups ahead of time), it's actually quite easy to
*After JITing expression evaluation itself is more than ten times faster
than before*.
But unfortunately that doesn't mean that queries are ten times faster -
usually we'll hit bottlenecks elsewhere relatively soon. WRT to
expression evaluation, the biggest cost afterwards are the relatively
high overhead V1 function calls - register based parameter passing is a
lot faster.
After experimenting a bit with doing JITing manually (a lot of
eye-stabbing kind of fun), I chose to use LLVM.
An overview of the patch-queue so far:
0001 Make get_last_attnums more generic.
Boring prerequisite.
0002 More efficient AggState->pertrans iteration.
Relatively boring minor optimization, but it turns out to be a easily
hit bottleneck. Will commit independently.
0003 Avoid materializing SRFs in the FROM list.
0004 Allow ROWS FROM to return functions as single record column.
0005 Basic implementation of targetlist SRFs via ROWS FROM.
0006 Remove unused code related to targetlist SRFs.
These are basically just pre-requisites for the faster expression
evaluation, and discussed elsewhere [2]. This implementation is *NOT*
going to survive, because we ended coming to the conclusion that using a
separate executor node to expand SRFs is a btter plan. But the new
expression evaluation code won't be able to handle SRFs...
0007 WIP: Optimize slot_deform_tuple() significantly.
This a) turns tuple deforming into an opcode based dispatch loop (using
computed goto on gcc/clang). b) moves a lot of the logic from
slot_deform_tuple() callsites into itself - that turns out to be more
efficient. I'm not entirely sure it's worth doing the opcode based
dispatch part, if we're going to also do the JIT bit - it's a fair
amount of code, and the speed difference only matters on large amounts
of rows.
0008 WIP: Faster expression processing and targetlist projection.
This, functionally nearly complete, patch turns expression evaluation
(and tuple deforming as a special case of that) into a "mini language"
which is interpreted using either a while(true) switch(opcode) or
computed goto to jump from opcode to opcode. It does so by moving a lot
more of the code for expression evaluation to initialization time and
building a linear series of steps to evaluate expressions, thereby
removing all recursion from expression processing.
This nearly entirely gets rid of the stack usage cost of expression
evaluation (we pretty much never recurse except for subplans). Being
able to remove, now redundant, calls to check_stack_depth() is a
noticeable benefit, it turns out that that check has a noticeable
performance impact (as it aparently forces to actually use the stack,
instead of just renumbering registers inside the CPU).
The new representation and evaluation is functionally nearly complete
(there's a single regression test failure, and I know why that is), but
the code needs a fair amount of polishing.
I do absolutely think that the fundamentals of this are the right way to
go, and I'm going to work hard on polishing the patch up. But this
isn't something that we can easily do in parts, and it's a huge ass
patch. So I'd like to have at least some more buyin before wasting even
more time on this.
0009 WIP: Add minimal keytest implementation.
More or less experimental patch that tries to implement simple
expression of the OpExpr(ScalarVar, Const) into a single expression
evaluation step. The benefits probably aren't big enough iff we do end
up doing JITing of expressions.
0010 WIP: Add configure infrastructure to enable LLVM.
0011 WIP: Beginning of a LLVM JIT infrastructure.
Very boring preliminary patches to add --with-llvm and some minimal
infrastructure to handle LLVM. If we go this way, JITed stuff needs to
be tied to resource owners, and we need some other centralized
infrastructure.
0012 Heavily-WIP: JITing of tuple deforming.
This, in a not-yet-that-nice manner, implements a JITed version of the
per-column stuff that slot_deform_tuple() does. It currently always
deforms all columns, which obviously would have to change. There's also
considerable additional performance improvements possible.
With this patch the per-column overhead (minus bitmap handling, which
0007 moved into a separate loop), drops from 10%+ into low single digits
for a number of queries. Afterwards the biggest cost is VARSIZE_ANY()
for varlena columns (which atm isn't inlined). That is, besides the
initial cache-miss when accessing tuple->t_hoff, which JITing can do
nothing about :(
This can be enabled/disabled using the new jit_tuple_deforming GUC. To
make this production ready in some form, we'd have to come up with a way
to determine when it's worth doing JITing. The easiest way would be to
do so after N slot_deform_tuple() calls or such, another way would be to
do it based on cost estimates.
0013 WIP: ExprEval: Make threaded dispatch use a separate field.
Boring preliminary patch. Increases memory usage a bit, needs to be
thought through more.
0014 Heavily-WIP: JITed expression evaluation.
This is the most-interesting bit performance wise. A few common types of
expressions are JITed. Scalar value accesses, function calls, boolean
expressions, aggregate references.
This can be enabled using the new jit_expressions GUC.
Even for the supported expression types I've taken some shortcuts
(e.g. strict functions aren't actually strict).
The performance benefits are quite noticeable. For TPCH ExecEvalExpr()
(which is where 0008 moved all of expression evaluation/projection) goes
from being the top profile entry, to barely noticeable, with the JITed
function usually not showing up in the top five entries anymore.
After the patch it becomes very clear that our function call
infrastructure is a serious bottlenecks. Passing all the arguments via
memory, and, even worse, forcing isnull/values to be on separate
cachelines, has significant performance implications. It also becomes
quite noticeable that nodeAgg's transition function invocation doesn't
go through ExecEvalExpr() but does that itself - which leads to constant
mispredictions if several transition values exist.
While the JIT code is relatively verbose, it turns out to not actually
be that hard to write after some startup pains. All the JITing of
expressions that exists so far was basically written in ~10 hours.
This also needs some heuristics about when JITing is
appropriate. Compiling an expression that's only executed once is never
going to be faster than doing the interpretation (it at least needs a
writable allocation for the code, and then a remap to make that code
read-only and executable). A trace based approach (everything executed
at least a thousand times) or cost based (all queries costing more than
100000 should be JITed) could make sense.
It's worthwhile to note that at the moment this is a per-query-execution
JIT, not something that can trivially be cached for prepared
statements. That'll need further infrastructure.
0015 Super-Heavily-WIP: LLVM perf integration.
This very very very preliminary patch (including some copy-pasted GPL
code!) creates /proc/perf-<pid>.map files, which allows perf to show
useful symbols for profile hits to JIT expressions. I plan to push this
towards LLVM, so this isn't something PG will have to do, but it's
helpful for evaluation.
I eventually plan to start separate threads about some of the parts in
here, but I think the overal picture needs some discussion first.
Q: Why LLVM and not a hand-rolled JIT?
A: Because hand-rolling a JIT is probably hard to scale to multiple
maintainers, and multiple platforms. I started down the path of doing
a hand-rolled x86 JIT, and that'd also be doable (faster compilation,
slower execution basically); but I doubt we'd end up having that on
different architectures on platforms. Not to speak of things like
proper debugger and profiler integration. I'm not entirely convinced
that that's the right path. It might also be a transitional step,
towards doing our completely own JIT. But I think it's a sensible
step.
Q: Why LLVM and not $jit-toolkit
A: Because all the other JIT stuff I looked at was either really
unportable (mostly x86 linux only), inconveniently licensed (like
e.g. gcc's jit library) or nearly unmaintained (luajit's stuff for
example). I might have missed something, but ISTM that atm the
choice is between hand-rolling and using LLVM.
Q: Does this actually inline functions from the backend?
A: No. That probably is something desirable in the future, but to me
that seems like it should be a separate step. The current one's big
enough. It's also further increases compilation times, so quite
possibly we only want to do so based on another set of heuristics.
Q: ?
Comments? Questions?
Regards,
Andres
[1] https://archives.postgresql.org/message-id/20161030073655.rfa6nvbyk4w2kkpk%40alap3.anarazel.de
[2] https://www.postgresql.org/message-id/20160523005327.v2tr7obytitxcnna@alap3.anarazel.de
这个patch的讨论,详见邮件组,本文末尾URL。
PostgreSQL社区的作风非常严谨,一个patch可能在邮件组中讨论几个月甚至几年,根据大家的意见反复的修正,patch合并到master已经非常成熟,所以PostgreSQL的稳定性也是远近闻名的。
参考
https://commitfest.postgresql.org/13/1061/