阿里云,Facebook,英特尔,Databricks, Flink 大数据&AI前沿技术一文看尽—2019杭州云栖大会 “大数据&AI” 峰会全集

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 本次大数据&AI峰会围绕 “大数据和AI” 主题,深入讨论大数据及AI发展的新形势、新挑战和新机遇。主题演讲内容涉及大数据*AI各个方面,广泛且深入。从阿里巴巴 “AI加持的飞天大数据平台、AI at Facebook、英特尔在数据分析和人工智能技术方面的创新,到广受开发者关注的Flink和Spark,通过数据,算力,算法深入阐述数据为本,智能为用,将大数据与AI深度融合,呈现了业界最前沿技术。

本文将为大家呈现2019杭州云栖大会“大数据&AI”峰会当天的完整分享视频和部分文字稿,希望可以让更多开发者了解大数据和AI领域的最前沿技术以及发展趋势。


-----------------------------以下为峰会现场视频回放--------------------------

大数据 & AI发展的新挑战和新机遇

贾扬清 阿里巴巴集团副总裁,阿里云智能计算平台事业部总裁、高级研究员
观看视频 >>>
阅读文字版 >>>

image.png
image.png


AI at Facebook

Bill Jia Facebook VP of AI Infrastructure
观看视频 >>>
image.png
image.png


AI 加持的阿里云飞天大数据平台技术揭秘

关涛 阿里云智能计算平台事业部研究员
徐晟 阿里云智能计算平台事业部资深技术专家
观看视频 >>>
阅读文字版 >>>

image.png
image.png
image.png


重磅发布:阿里云智能大数据 & AI 产品发布

李京梅 阿里云智能计算平台事业部资深产品专家
观看视频 >>>
image.png
image.png


加快统一的数据分析和人工智能技术创新

Jason Dai 英特尔大数据技术全球CTO,大数据分析和人工智能创新院院长
观看视频 >>>
image.png
image.png


Ververica Platform-阿里巴巴全新Flink企业版揭秘

王峰 阿里巴巴资深技术专家
观看视频 >>>
阅读文字版 >>>
image.png
image.png


New Developments in the Open Source Ecosystem: Apache Spark 3.0 and Koalas

李潇 Databricks Spark 研发总监
观看视频 >>>
image.png
image.png


第二届云上编程大赛颁奖礼

贾扬清 阿里巴巴集团副总裁,阿里云智能计算平台事业部总裁、高级研究员
刘湘雯 阿里云智能事业群战略与合作部总经理
李京峰 智联招聘 首席技术官
观看视频 >>>
image.png
image.png

数字化时代,数据和AI赋予人类更多洞察与想象。在某种程度上,大数据和AI技术已成为国家战略级技术,成为数字化时代的制空权。而掌握制空权,最重要的是立足自主研发,同时开放兼容,打造中国自主IT生态,如此才能真正脱离依赖,完成IT生态的自主可控。希望本次峰会的分享能让开发者们有所收获,以上是本次峰会的全部内容。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2天前
|
存储 人工智能 Serverless
阿里云《AI 剧本生成与动画创作》技术解决方案测评
本问是对《AI 剧本生成与动画创作》的用心体验。结论不是特别理想,在实际使用中仍存在一些问题。
50 22
|
4天前
|
人工智能 前端开发 Serverless
阿里云《AI 剧本生成与动画创作》解决方案技术评测
随着人工智能技术的发展,越来越多的工具和服务被应用于内容创作领域。阿里云推出的《AI 剧本生成与动画创作》解决方案,利用函数计算 FC 构建 Web 服务,结合百炼模型服务和 ComfyUI 工具,实现了从故事剧本撰写、插图设计、声音合成和字幕添加到视频合成的一站式自动化流程。本文将对该方案进行全面的技术评测,包括实现原理及架构介绍、部署文档指引、具体耗时分析以及实际使用体验。
51 16
|
4天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云《AI 剧本生成与动画创作》解决方案深度评测
阿里云《AI 剧本生成与动画创作》解决方案深度评测
29 7
|
5天前
|
人工智能 搜索推荐 安全
正式上线!阿里云短信模板 AI 助手,10 秒生成/改写个性化、合规短信内容
阿里云短信服务 - 短信模板AI 助手已全面开放,欢迎体验!
|
消息中间件 传感器 NoSQL
大数据——Flink学习
1. Flink简介
1127 0
大数据——Flink学习
|
5月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
3月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1733 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
1月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
196 0
Flink CDC 在阿里云实时计算Flink版的云上实践
zdl
|
3月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
212 56
|
2月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。

相关产品

  • 云原生大数据计算服务 MaxCompute