[jjzhu学python]之使用python抓取拉勾网职位信息并做简单统计分析

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 一直对python感兴趣,最近想玩玩爬虫,抓拉钩互联网职位招聘信息,然后做点统计什么的,废话不多说,开打开打。 作为程序猿,对什么boss直聘,拉勾网什么的招聘网站应该不陌生.....http://www.lagou.com/ 运行环境: 1、win7 32bit 2、pycharm 4.0.4 3、python 3.4 4、google c

一直对python感兴趣,最近想玩玩爬虫,抓拉钩互联网职位招聘信息,然后做点统计什么的,废话不多说,开打开打。

作为程序猿,对什么boss直聘,拉勾网什么的招聘网站应该不陌生.....http://www.lagou.com/

运行环境:

1、win7 32bit

2、pycharm 4.0.4

3、python 3.4

4、google chrome

需要的插件

1、beautifulsoup(相关安装和使用可以到 官网(点击打开)查阅)

2、pymsql(安装可以到github下载安装https://github.com/PyMySQL/PyMySQL

要抓一个网站的数据,当然要分析这个网站的网页代码是怎么写的,也就是你要的信息数据放在什么位置。

打开拉钩首页,按F12进入网页调试模式,可以发现拉钩把所有的职位都放在了id=sidebar标签下,每个职位都放在<a></a>标签下,所以很容易的就取到了所有职位

def grab_position(self):
        """
        获取所有招聘职位
        :return:
        """
        html = self.my_opener.open(self.lagou_url)
        soup = BeautifulSoup(html.read().decode(), "html.parser")
        side_bar = soup.find(id="sidebar")
        mainNavs = side_bar.find(class_="mainNavs")
        menu_boxes = mainNavs.find_all(class_="menu_box")
        all_positions = []
        for menu_box in menu_boxes:
            menu_sub = menu_box.find(class_="menu_sub")  # 所有职位
            all_a_tags = menu_sub.find_all("a")  # 找出所有职位的a标签
            for a_tag in all_a_tags:
                all_positions.append(a_tag.contents[0])
        return all_positions

其实,可以看拉钩页面的源码,显示比较单一,然后看它的前端页面源码,可以看到,就是用了一个模板,然后发请求,根据返回的数据填入其中就可以了,你可以随意点一个职位链接,在看它的network,看加载页面的那个请求,发现了什么?


它就是用了一个positionAjax.json?city=*****的post请求,然后根据返回数据显示的

这说明什么?说明你要他的职位数据,你只要发请求,然后对上面返回的json数据提取就可以了!!不需要处理它的页面!
分析它不同职位的请求,你就会发现,它所需要的参数就是一个当前城市city,当前页号pn,和职位种类kd

所以,只要获取到它所有的城市,所有的职位,然后依次发请求,就可以轻松的获取它所有的招聘信息了.....上面已经获取了所有职位,现在获取所有城市
打开 http://www.lagou.com/zhaopin/,看工作地点,就可以获取所有招聘城市

提取代码

<pre name="code" class="python">def grab_city(self):
        """
        获取所有的城市
        :return:
        """
        op = self.my_opener.open(self.seed_url)
        my_soup = BeautifulSoup(op.read().decode(), 'html.parser')
        all_positions_html = my_soup.find(class_='more more-positions')
        all_positions_hrefs = all_positions_html.find_all('a')
        all_cities = []
        for a_tag in all_positions_hrefs:
            all_cities.append(a_tag.contents[0])
        return all_cities
 现在有了所有职位分类和所有城市,接下来的任务就是发请求,获取数据了。一开始是用单线程的.....速度可想而知,所以,用各多线程速度会明显提升很多。 

python的多线程使用比较简单,需要引入threading.Thread 和 queue(队列)

from threading import Thread
from time import sleep
from queue import Queue
开启多线程

# 开启多线程
    def start_thread(self):
        for i in range(self.thread_num):
            curr_thread = Thread(target=self.working)
            curr_thread.setDaemon(True)
            curr_thread.start()

处理函数working()

def working(self):
        while True:
            post_data = self.job_queue.get()  # 从队列中取任务
            self.grab(post_data)  # 开始抓取
            sleep(1)
            self.job_queue.task_done()  # 完成
抓取函数,也就是发请求函数grab()

    def grab(self, args):
        """
        根据参数args发请求,获取数据
        :param args:请求参数字典{'first': '?', 'kd': ?, 'city': ?, 'pn': ?}
        :return:
        """
        url = self.base_request_url + urllib.parse.quote(args['city'])
        url.encode(encoding='utf-8')
        print(url + "--------"+str(args))
        del args['city']  # 把city这个键删了,,,,不然,请求没有数据返回!!!
        post_data = urllib.parse.urlencode(args).encode()
        op = self.my_opener.open(url, post_data)
        return_json = json.loads(op.read().decode())
        content_json = return_json['content']
        result_list = content_json['result']

        for result in result_list:
            # 插入数据库啦
            print(result)
            self.insert_into_database(result)
当然,还得给他们分配任务,接下来就是把所有任务都放在队列中了,根据当前城市和当前职位来创建请求任务

def grab_category(self, city, kd):
        """
        分类抓取
        :param city:当前城市
        :param kd: 当前职位类型
        :return:
        """
        url = self.base_request_url+urllib.parse.quote(city)
        url.encode(encoding='utf-8')
        pn = 1  # 第一页单独处理吧,因为要获取当前类别下的总页数
        postdata = urllib.parse.urlencode({'first': 'true', 'pn': pn, 'kd': kd}).encode()
        pn += 1
        op = self.my_opener.open(url, postdata)
        return_json = json.loads(op.read().decode())
        content_json = return_json['content']
        total_page = content_json['totalPageCount'] # 获取当前类别的总页数
        result_list = content_json['result']  # 取返回数据
        for result in result_list:
            self.insert_into_database(result)  # 入库吧

        while pn <= total_page:
            # 一页有15条职位信息,一页作为一个任务塞进任务队列吧....
            self.job_queue.put({'first': 'false', 'kd': kd, 'city': city, 'pn': pn})
            pn += 1  
        self.job_queue.join()  # 让进程尽情的发请求吧....
主要的工作都差不多完成了,现在就运行它抓数据去吧
def main():
    my_crawler = LagouCrawler(db='position_info', max_count=30)
    my_crawler.start()

if __name__ == '__main__':
    main()

上面给的都是代码片段,可能有些辅助方法没贴出来,这里就把所有的代码都放上来吧。

LagouCrawler类:

import urllib.request
import urllib.parse
import http.cookiejar
import json
import datetime
import re
from threading import Thread
from time import sleep
from queue import Queue
from bs4 import BeautifulSoup

from grabutil.mysqlconnection import Connection


class LagouCrawler:
    def __init__(self, db, max_count=10, thread_num=10):
        """
        :param db: 数据库名(mysql)
        :param max_count: 批量插入数据库的条数
        :param thread_num:  并行线程数
        :return:
        """
        self.position_default_url = "http://www.lagou.com/jobs/"
        self.seed_url = 'http://www.lagou.com/zhaopin/'
        self.lagou_url = "http://www.lagou.com/"
        self.base_request_url = "http://www.lagou.com/jobs/positionAjax.json?city="
        self.to_add_infos = []
        self.max_count = max_count  # 批量插入的记录数
        self.thread_num = thread_num  # 线程数
        self.job_queue = Queue()  # 任务队列
        self.my_opener = self.make_my_opener()
        self.query = "insert into position_info.position(city, companyId, companyLabelList, companyName,  companyShortName, " \
            "companySize, education, financeStage, industryField, jobNature, leaderName, positionAdvantage," \
            "positionFirstType, positionId, positionName, positionType, pvScore, workYear, salary_min, salary_max," \
            "homepage, positionDescibe)" \
            " values (%s, %s, %s, %s,%s, %s, %s, %s,%s, %s, %s, %s,%s, %s, %s,%s, %s, %s, %s, %s, %s, %s)"
        self.mysqlconn = Connection(db=db)
        self.start_thread()  # 开启多线程

    # 开启多线程
    def start_thread(self):
        for i in range(self.thread_num):
            curr_thread = Thread(target=self.working)
            curr_thread.setDaemon(True)
            curr_thread.start()

    def make_my_opener(self):
        """
        模拟浏览器发送请求
        :return:
        """
        head = {
            'Connection': 'Keep-Alive',
            'Accept': 'text/html, application/xhtml+xml, */*',
            'Accept-Language': 'en-US,en;q=0.8,zh-Hans-CN;q=0.5,zh-Hans;q=0.3',
            'User-Agent': 'Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko'
        }
        cj = http.cookiejar.CookieJar()  # cookie
        opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj))
        header = []
        for key, value in head.items():
            elem = (key, value)
            header.append(elem)
        opener.addheaders = header
        return opener

    def change_salary(self, salary):
        """
        :param salary: 处理拉钩的薪资
        :return:
        """
        salaries = re.findall("\d+", salary)
        if salaries.__len__() == 0:
            return 0, 0
        elif salaries.__len__() == 1:
            return int(salaries[0])*1000, int(salaries[0])*1000
        else:
            return int(salaries[0])*1000, int(salaries[1])*1000

    def position_detail(self, position_id):
        """
        处理职位详情
        :param position_id:
        :return:
        """
        position_url = self.position_default_url + str(position_id)+".html"
        print(position_url)
        op = self.my_opener.open(position_url, timeout=1000)
        detail_soup = BeautifulSoup(op.read().decode(), 'html.parser')
        job_company = detail_soup.find(class_='job_company')
        job_detail = detail_soup.find(id='job_detail')
        job_req = job_detail.find(class_='job_bt')
        c_feature = job_company.find(class_='c_feature')
        homePage = c_feature.find('a')
        homeUrl = homePage.get('href')
        return job_req, homeUrl

    def grab_city(self):
        """
        获取所有的城市
        :return:
        """
        op = self.my_opener.open(self.seed_url)
        my_soup = BeautifulSoup(op.read().decode(), 'html.parser')
        all_positions_html = my_soup.find(class_='more more-positions')
        all_positions_hrefs = all_positions_html.find_all('a')
        all_cities = []
        for a_tag in all_positions_hrefs:
            all_cities.append(a_tag.contents[0])
        return all_cities

    def grab_position(self):
        """
        获取所有招聘职位
        :return:
        """
        html = self.my_opener.open(self.lagou_url)
        soup = BeautifulSoup(html.read().decode(), "html.parser")
        side_bar = soup.find(id="sidebar")
        mainNavs = side_bar.find(class_="mainNavs")
        menu_boxes = mainNavs.find_all(class_="menu_box")
        all_positions = []
        for menu_box in menu_boxes:
            menu_sub = menu_box.find(class_="menu_sub")  # 所有职位
            all_a_tags = menu_sub.find_all("a")  # 找出所有职位的a标签
            for a_tag in all_a_tags:
                all_positions.append(a_tag.contents[0])
        return all_positions

    def insert_into_database(self, result):
        """
        插入数据
        :param result:待插入的抓取信息
        :return:
        """
        city = result['city']
        companyId = result['companyId']
        companyLabelList = result['companyLabelList']
        companyLabel = ''
        for lable in companyLabelList:
            companyLabel += lable+" "
        companyName = result['companyName']
        companyShortName = result['companyShortName']
        companySize = result['companySize']
        education = result['education']
        financeStage = result['financeStage']
        industryField = result['industryField']
        jobNature = result['jobNature']
        leaderName = result['leaderName']
        positionAdvantage = result['positionAdvantage']
        positionFirstType = result['positionFirstType']
        positionId = result['positionId']
        job_req, homeUrl = self.position_detail(positionId)  # 获取信息
        positionName = result['positionName']
        positionType = result['positionType']
        pvScore = result['pvScore']
        salary = result['salary']
        salaryMin, salaryMax = self.change_salary(salary)
        workYear = result['workYear']
        '''
        print(city, companyId, companyLabel, companyName,  companyShortName, companySize,
              education, financeStage, industryField, jobNature, leaderName, positionAdvantage,
            positionFirstType, positionId, positionName, positionType, pvScore, salary, workYear)
        '''
        self.to_add_infos.append((city, str(companyId), companyLabel, companyName,  companyShortName, companySize,
                                  education, financeStage, industryField, jobNature, leaderName, positionAdvantage,
                                  positionFirstType, positionId, positionName, positionType, pvScore, workYear,
                                  salaryMin, salaryMax, homeUrl, str(job_req)))
        if self.to_add_infos.__len__() >= self.max_count:  # 批量插入
            self.mysqlconn.execute_many(sql=self.query, args=self.to_add_infos)
            self.to_add_infos.clear()  # 清空数据

    def working(self):
        while True:
            post_data = self.job_queue.get()  # 取任务
            self.grab(post_data)  # 抓取任务
            sleep(1)
            self.job_queue.task_done()

    def grab(self, args):
        """
        根据参数args发请求,获取数据
        :param args:请求参数字典{'first': '?', 'kd': ?, 'city': ?, 'pn': ?}
        :return:
        """
        url = self.base_request_url + urllib.parse.quote(args['city'])
        url.encode(encoding='utf-8')
        print(url + "--------"+str(args))
        del args['city']  # 把city这个键删了,,,,不然,请求没有数据返回!!!
        post_data = urllib.parse.urlencode(args).encode()
        op = self.my_opener.open(url, post_data)
        return_json = json.loads(op.read().decode())
        content_json = return_json['content']
        result_list = content_json['result']

        for result in result_list:
            # 插入数据库啦
            print(result)
            self.insert_into_database(result)

    def grab_category(self, city, kd):
        """
        分类抓取
        :param city:当前城市
        :param kd: 当前职位类型
        :return:
        """
        url = self.base_request_url+urllib.parse.quote(city)
        url.encode(encoding='utf-8')
        pn = 1
        postdata = urllib.parse.urlencode({'first': 'true', 'pn': pn, 'kd': kd}).encode()
        pn += 1
        op = self.my_opener.open(url, postdata)
        return_json = json.loads(op.read().decode())
        content_json = return_json['content']
        total_page = content_json['totalPageCount']
        result_list = content_json['result']
        for result in result_list:
            self.insert_into_database(result)

        while pn <= total_page:
            # 一个任务处理一页
            self.job_queue.put({'first': 'false', 'kd': kd, 'city': city, 'pn': pn})
            pn += 1
        self.job_queue.join()
        print('successful')

    def start(self):
        all_cities = self.grab_city()
        all_positions = self.grab_position()
        grabed_cities_file = open("d:\\grabed_cities.txt", 'a')
        for i in range(1, 2):
            start_time = datetime.datetime.now()
            for j in range(1, int(all_positions.__len__()/2)):
                self.grab_category(city=all_cities[i], kd=all_positions[j])
                end_time = datetime.datetime.now()
                grabed_cities_file.write(all_cities[i]+"----职位:"+all_positions[j]+"----耗时:"
                                         + str((end_time-start_time).seconds)+"s\n")

            end_time = datetime.datetime.now()
            print((end_time-start_time).seconds)
            grabed_cities_file.write(all_cities[i]+"----耗时:"+str((end_time-start_time).seconds)+"s\n")
        self.mysqlconn.close()
        grabed_cities_file.close()
        print("----------finish--------------")

mysql  Connection类:

import pymysql


class Connection:
    def __init__(self, db, host=u'localhost', port=3306, user=u'root', passwd=u'', charset=u'utf8'):
        self.connection = pymysql.connect(db=db, host=host, port=port, user=user, passwd=passwd, charset=charset)
        self.cur = self.connection.cursor()

    def execute_single(self, sql, args):
        self.cur.execute(sql, args)
        self.connection.commit()

    def execute_many(self, sql, args):
        self.cur.executemany(sql, args)
        self.connection.commit()

    def close(self):
        self.cur.close()
        self.connection.close()
源码github上也有,感兴趣的话可以共同讨论讨论
未完待续....后面统计的之后在写,现在还没做....





相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
2月前
|
数据采集 存储 JSON
地区电影市场分析:用Python爬虫抓取猫眼/灯塔专业版各地区票房
地区电影市场分析:用Python爬虫抓取猫眼/灯塔专业版各地区票房
|
2月前
|
数据采集 存储 XML
Python爬虫XPath实战:电商商品ID的精准抓取策略
Python爬虫XPath实战:电商商品ID的精准抓取策略
|
3月前
|
前端开发 数据安全/隐私保护 Python
虚拟物流单号生成器, 虚拟快递单号假物流信息, 虚拟快递单号在线生成【python框架】
这个虚拟物流单号生成系统包含以下功能:支持多种主流快递公司的单号生成
|
3月前
|
数据安全/隐私保护 数据格式 Python
快递单号模拟生成器, 虚拟物流信息在线生成,虚假快递单号生成器【python】
支持多种主流快递公司生成符合各快递公司规则的快递单号自动生成收发件人信息
|
3月前
|
JSON 前端开发 API
快递单号生成器在线, 快递单号模拟生成器, 虚拟物流信息在线生成【python】
项目包含三个主要模块:快递单号生成器核心逻辑、Flask Web应用程序和前端HTML页面
|
3月前
|
JSON API 数据安全/隐私保护
车辆五项信息查询 API 的实践指南:通过Python调用赋能车辆信息标准化
本API通过车牌号快速获取车辆五项核心信息,包括品牌、登记日期、车架号等,助力二手车评估、维修、保险等场景实现数字化转型。数据源自权威公安交管库,日更同步,毫秒级响应,满足高并发需求,符合隐私保护规范,是推动汽车后市场智能化的重要工具。
161 0
|
4月前
|
API Python
VIN码查询API的实战指南:获取二手车信息以Python为例
随着机动车保有量上升,中国二手车市场迎来发展机遇。本文介绍如何通过VIN码查询API获取车辆详细信息,提升交易透明度与安全性。
81 1
|
4月前
|
数据采集 存储 数据可视化
Python爬取招标信息并生成可视化分析报告
Python爬取招标信息并生成可视化分析报告
|
数据挖掘
87 网站点击流数据分析案例(统计分析-Visit分析【点击流模型】)
87 网站点击流数据分析案例(统计分析-Visit分析【点击流模型】)
156 0
87 网站点击流数据分析案例(统计分析-Visit分析【点击流模型】)
|
数据挖掘
88 网站点击流数据分析案例(统计分析-键路径转化率分析)
88 网站点击流数据分析案例(统计分析-键路径转化率分析)
149 0

热门文章

最新文章

推荐镜像

更多