深入理解Java线程状态

简介: 赞助平台 首页 / 文章管理 / 文章编辑Java线程状态友情提示:文章每30秒自动保存一次,编辑器支持图片拖动上传或者复制粘贴上传~0 线程状态概述分类6个状态定义: java.lang.Thread.StateNew: 尚未启动的线程的线程状态。

赞助平台
首页 / 文章管理 / 文章编辑

Java线程状态
友情提示:文章每30秒自动保存一次,编辑器支持图片拖动上传或者复制粘贴上传~

0 线程状态概述

分类

6个状态定义: java.lang.Thread.State

  1. New: 尚未启动的线程的线程状态。
  2. Runnable: 可运行线程的线程状态,等待CPU调度。
  3. Blocked: 线程阻塞等待监视器锁定的线程状态。
    处于synchronized同步代码块或方法中被阻塞。
  4. Waiting: 等待线程的线程状态。下 列不带超时的方式:
    Object.wait、Thread.join、 LockSupport.park
  5. Timed Waiting:具有指定等待时间的等待线程的线程状态。下 列带超时的方式:
    Thread.sleep、0bject.wait、 Thread.join、 LockSupport.parkNanos、 LockSupport.parkUntil
  6. Terminated: 终止线程的线程状态。线程正常完成执行或者出现异常。

流程图



1 NEW


实现Runnable接口和继承Thread可以得到一个线程类,new一个实例出来,线程就进入了初始状态

线程还是没有开始执行

有状态了,那肯定是已经创建好线程对象了(如果对象都没有,何来状态这说),
问题的焦点就在于还没有开始执行,当调用线程的start()方法时,线程不一定会马上执行,因为Java线程是映射到操作系统的线程执行,此时可能还需要等操作系统调度,但此时该线程的状态已经为RUNNABLE

2 RUNNABLE



只是说你有资格运行,调度程序没有挑选到你,你就永远是可运行状态。

2.1条件

  • 调用start(),进入可运行态
  • 当前线程sleep()结束,其他线程join()结束,等待用户输入完毕,某个线程拿到对象锁,这些线程也将进入可运行状态
  • 当前线程时间片用完,调用当前线程的yield()方法,当前线程进入可运行状态
  • 锁池里的线程拿到对象锁后,进入可运行状态
  • 正在执行线程必属于此态

这个状态是最有争议的,注释中说了,它表示线程在JVM层面是执行的,但在操作系统层面不一定,它举例是CPU,毫无疑问CPU是一个操作系统资源,但这也就意味着在等操作系统其他资源的时候,线程也会是这个状态

这里就有一个关键点IO阻塞算是等操作系统的资源?

3 BLOCKED


被挂起,线程因为某种原因放弃了cpu timeslice,暂时停止运行。

3.1条件

  • 当前线程调用Thread.sleep(),进入阻塞态
  • 运行在当前线程里的其它线程调用join(),当前线程进入阻塞态。
  • 等待用户输入的时候,当前线程进入阻塞态。

3.2 分类

  • 等待阻塞
    运行的线程执行o.wait()方法,JVM会把该线程放入等待队列(waitting queue)中

  • 同步阻塞
    运行的线程在获取对象的同步锁时,若该同步锁被别的线程占用,则JVM会把该线程放入锁池(lock pool)中

  • 其他阻塞
    运行的线程执行Thread.sleep(long ms)或t.join()方法,或者发出了I/O请求时,JVM会把该线程置为阻塞状态

当sleep()状态超时、join()等待线程终止或者超时、或者I/O处理完毕时,线程重新转入可运行(runnable)状态

线程在阻塞等待monitor lock(监视器锁)
一个线程在进入synchronized修饰的临界区的时候,或者在synchronized临界区中调用Object.wait然后被唤醒重新进入synchronized临界区都对应该态。

结合上面RUNNABLE的分析,也就是I/O阻塞不会进入BLOCKED状态,只有synchronized会导致线程进入该状态

关于BLOCKED状态,注释里只提到一种情况就是进入synchronized声明的临界区时会导致,这个也很好理解,synchronized是JVM自己控制的,所以这个阻塞事件它自己能够知道(对比理解上面的操作系统层面)。

interrupt()是无法唤醒的!只是做个标记而已!

4 等待


线程拥有对象锁后进入到相应的代码区后,调用相应的“锁对象”的wait()后产生的一种结果

  • 变相的实现
    LockSupport.park()

LockSupport parkNanos( )
LockSupport parkUntil( )
Thread join( )

它们也是在等待另一个对象事件的发生,也就是描述了等待的意思。

BLOCKED 状态也是等待的意思,有什么关系与区别呢?

  • BLOCKED 是虚拟机认为程序还不能进入某个区域,因为同时进去就会有问题,这是一块临界区
  • wait()的先决条件是要进入临界区,也就是线程已经拿到了“门票”,自己可能进去做了一些事情,但此时通过判定某些业务上的参数(由具体业务决定),发现还有一些其他配合的资源没有准备充分,那么自己就等等再做其他的事情

有一个非常典型的案例就是通过wait()notify()完成生产者/消费者模型
当生产者生产过快,发现仓库满了,即消费者还没有把东西拿走(空位资源还没准备好) 时,生产者就等待有空位再做事情,消费者拿走东西时会发出“有空位了”的消息,那么生产者就又开始工作了
反过来也是一样,当消费者消费过快发现没有存货时,消费者也会等存货到来,生产者生产出内容后发出“有存货了”的消息,消费者就又来抢东西了。


在这种状态下,如果发生了对该线程的interrupt()是有用的,处于该状态的线程内部会抛出一个InerruptedException
这个异常应当在run()里面捕获,使得run()正常地执行完成。当然在run()内部捕获异常后,还可以让线程继续运行,这完全是根据具体的应用场景来决定的。

在这种状态下,如果某线程对该锁对象做了notify(),那么将从等待池中唤醒一个线程重新恢复到RUNNABLE
notify()外,还有一个notifyAll() ,前者是
唤醒一个处于WAITING的线程,而后者是唤醒所有的线程。

Object.wait()是否需要死等呢?

不是,除中断外,它还有两个重构方法

  • Object.wait(int timeout),传入的timeout 参数是超时的毫秒值,超过这个值后会自动唤醒,继续做下面的操作(不会抛出InterruptedException ,但是并不意味着我们不去捕获,因为不排除其他线程会对它做interrup())。
  • Object.wait(int timeout,int nanos) 这是一个更精确的超时设置,理论上可以精确到纳秒,这个纳秒值可接受的范围是0~999999 (因为100000onS 等于1ms)。

同样的
LockSupport park( )
LockSupport.parkNanos( )
LockSupport.parkUntil( )
Thread.join()
这些方法都会有类似的重构方法来设置超时,达到类似的目的,不过此时的状态不再是WAITING,而是TIMED.WAITING

通常写代码的人肯定不想让程序死掉,但是又希望通过这些等待、通知的方式来实现某些平衡,这样就不得不去尝试采用“超时+重试+失败告知”等方式来达到目的。

TIMED _WAITING


当调用Thread.sleep()时,相当于使用某个时间资源作为锁对象,进而达到等待的目的,当时间达到时触发线程回到工作状态。

TERM_INATED


这个线程对象也许是活的,但是,它已经不是一个单独执行的线程,在一个死去的线程上调用start()方法,会抛java.lang.IllegalThreadStateException.
线程run()、main() 方法执行结束,或者因异常退出了run()方法,则该线程结束生命周期。死亡的线程不可再次复生。
run()走完了,线程就处于这种状态。其实这只是Java 语言级别的一种状态,在操作系统内部可能已经注销了相应的线程,或者将它复用给其他需要使用线程的请求,而在Java语言级别只是通过Java 代码看到的线程状态而已。

为什么wait( )notify( )必须要使用synchronized

如果不用就会报ilegalMonitorStateException
常见的写法如下:

synchronized(Object){
  object.wait() ;//object.notify() ;
}
​
synchronized(this){
  this.wait();
}
synchronized fun( ){
  this.wait();//this.notify();
}

wait()和notify()`是基于对象存在的。

  • 那为什么要基于对象存在呢?
    既然要等,就要考虑等什么,这里等待的就是一个对象发出的信号,所以要基于对象而存在。

不用对象也可以实现,比如suspend()/resume()就不需要,但是它们是反面教材,表面上简单,但是处处都是问题

理解基于对象的这个道理后,目前认为它调用的方式只能是Object.wait(),这样才能和对象挂钩。但这些东西还与问题“wait()/notify() 为什么必须要使用synchronized" 没有
半点关系,或者说与对象扯上关系,为什么非要用锁呢?

既然是基于对象的,因此它不得不用一个数据结构来存放这些等
待的线程,而且这个数据结构应当是与该对象绑定的(通过查看C++代码,发现该数据结构为一个双向链表),此时在这个对象上可能同时有多个线程调用wait()/notify(),在向这个对象所对应的双向链表中写入、删除数据时,依然存在并发的问题,理论上
也需要一个锁来控制。在JVM 内核源码中并没有发现任何自己用锁来控制写入的动作,只是通过检查当前线程是否为对象的OWNER 来判定是否要抛出相应的异常。由此可见它希望该动作由Java 程序这个抽象层次来控制,它为什么不想去自己控制锁呢?
因为有些时候更低抽象层次的锁未必是好事,因为这样的请求对于外部可能是反复循环地去征用,或者这些代码还可能在其他地方复用,也许将它粗粒度化会更好一些,而且这样的代在写在Java 程序中本身也会更加清晰,更加容易看到相互之间的关系。

interrupt()操作只对处于WAITING 和TIME_WAITING 状态的线程有用,让它们]产生实质性的异常抛出。
在通常情况下,如果线程处于运行中状态,也不会让它中断,如果中断是成立的,可能会导致正常的业务运行出现问题。另外,如果不想用强制手段,就得为每条代码的运行设立检查,但是这个动作很麻烦,JVM 不愿意做这件事情,它做interruptl )仅仅是打一个标记,此时程序中通过isInterrupt()方法能够判定是否被发起过中断操作,如果被中断了,那么如何处理程序就是设计上的事情了。

举个例子,如果代码运行是一个死循环,那么在循环中可以这样做:

while(true) {
  if (Thread.currentThread.isInterrupt()) {
  //可以做类似的break、return,抛出InterruptedExcept ion 达到某种目的,这完全由自己决定
  //如拋出异常,通常包装一层try catch 异常处理,进一步做处理,如退出run 方法或什么也不做
  }
}

这太麻烦了,为什么不可以自动呢?
可以通过一些生活的沟通方式来理解一下: 当你发现门外面有人呼叫你时,你自己是否搭理他是你的事情,这是一种有“爱”的沟通方式,反之是暴力地破门而入,把你强制“抓”出去的方式。

在JDK 1.6 及以后的版本中,可以使用线程的interrupted( )


判定线程是否已经被调用过中断方法,表面上的效果与isInterrupted()
结果一样,不过这个方法是一个静态方法
除此之外,更大的区别在于这个方法调用后将会重新将中断状态设置为false,方便于循环利用线程,而不是中断后状态就始终为true,就无法将状态修改回来了。类似的,判定线程的相关方法还有isAlive()

isDaemon()

线程的状态图

等待队列

  1. 调用wait(), notify()前,必须获得obj锁,也就是必须写在synchronized(obj) 代码段内
  2. 与等待队列相关的步骤和图
  • 线程1获取对象A的锁,正在使用对象A。
  • 线程1调用对象A的wait()方法。
  • 线程1释放对象A的锁,并马上进入等待队列。
  • 锁池里面的对象争抢对象A的锁。
  • 线程5获得对象A的锁,进入synchronized块,使用对象A。
  • 线程5调用对象A的notifyAll()方法,唤醒所有线程,所有线程进入锁池。|| 线程5调用对象A的notify()方法,唤醒一个线程,不知道会唤醒谁,被唤醒的那个线程进入锁池。
  • notifyAll()方法所在synchronized结束,线程5释放对象A的锁。
  • 锁池里面的线程争抢对象锁,但线程1什么时候能抢到就不知道了。|| 原本锁池+第6步被唤醒的线程一起争抢对象锁。多线程等待队列

锁池状态

  1. 当前线程想调用对象A的同步方法时,发现对象A的锁被别的线程占有,此时当前线程进入锁池状态。
    简言之,锁池里面放的都是想争夺对象锁的线程
  2. 当一个线程1被另外一个线程2唤醒时,1线程进入锁池状态,去争夺对象锁。
  3. 锁池是在同步的环境下才有的概念,一个对象对应一个锁池

几个方法的比较

  • Thread.sleep(long millis)
    一定是当前线程调用此方法,当前线程进入阻塞,不释放对象锁,millis后线程自动苏醒进入可运行态。

作用:给其它线程执行机会的最佳方式。

  • Thread.yield()
    一定是当前线程调用此方法,当前线程放弃获取的cpu时间片,由运行状态变会可运行状态,让OS再次选择线程。

作用:让相同优先级的线程轮流执行,但并不保证一定会轮流执行。实际中无法保证yield()达到让步目的,因为让步的线程还有可能被线程调度程序再次选中。Thread.yield()不会导致阻塞。

  1. t.join()/t.join(long millis),当前线程里调用其它线程1的join方法,当前线程阻塞,但不释放对象锁,直到线程1执行完毕或者millis时间到,当前线程进入可运行状态。
  2. obj.wait(),当前线程调用对象的wait()方法,当前线程释放对象锁,进入等待队列。依靠notify()/notifyAll()唤醒或者wait(long timeout)timeout时间到自动唤醒。
  3. obj.notify()唤醒在此对象监视器上等待的单个线程,选择是任意性的。notifyAll()唤醒在此对象监视器上等待的所有线程。

疑问

  1. 当对象锁被某一线程释放的一瞬间,锁池里面的哪个线程能获得这个锁?随机?队列FIFO?or sth else?
  2. 等待队列里许许多多的线程都wait()在一个对象上,此时某一线程调用了对象的notify()方法,那唤醒的到底是哪个线程?随机?队列FIFO?or sth else?java文档就简单的写了句:选择是任意性的。
目录
相关文章
|
14天前
|
Java 开发者
Java多线程编程中的常见误区与最佳实践####
本文深入剖析了Java多线程编程中开发者常遇到的几个典型误区,如对`start()`与`run()`方法的混淆使用、忽视线程安全问题、错误处理未同步的共享变量等,并针对这些问题提出了具体的解决方案和最佳实践。通过实例代码对比,直观展示了正确与错误的实现方式,旨在帮助读者构建更加健壮、高效的多线程应用程序。 ####
|
22天前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
5天前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####
|
5天前
|
安全 Java 开发者
Java中的多线程编程:从基础到实践
本文深入探讨了Java多线程编程的核心概念和实践技巧,旨在帮助读者理解多线程的工作原理,掌握线程的创建、管理和同步机制。通过具体示例和最佳实践,本文展示了如何在Java应用中有效地利用多线程技术,提高程序性能和响应速度。
28 1
|
13天前
|
安全 Java 开发者
Java 多线程并发控制:深入理解与实战应用
《Java多线程并发控制:深入理解与实战应用》一书详细解析了Java多线程编程的核心概念、并发控制技术及其实战技巧,适合Java开发者深入学习和实践参考。
|
13天前
|
Java 开发者
Java多线程编程的艺术与实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的技术文档,本文以实战为导向,通过生动的实例和详尽的代码解析,引领读者领略多线程编程的魅力,掌握其在提升应用性能、优化资源利用方面的关键作用。无论你是Java初学者还是有一定经验的开发者,本文都将为你打开多线程编程的新视角。 ####
|
12天前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
18天前
|
安全 Java 开发者
深入解读JAVA多线程:wait()、notify()、notifyAll()的奥秘
在Java多线程编程中,`wait()`、`notify()`和`notifyAll()`方法是实现线程间通信和同步的关键机制。这些方法定义在`java.lang.Object`类中,每个Java对象都可以作为线程间通信的媒介。本文将详细解析这三个方法的使用方法和最佳实践,帮助开发者更高效地进行多线程编程。 示例代码展示了如何在同步方法中使用这些方法,确保线程安全和高效的通信。
46 9
|
15天前
|
安全 Java 开发者
Java多线程编程中的常见问题与解决方案
本文深入探讨了Java多线程编程中常见的问题,包括线程安全问题、死锁、竞态条件等,并提供了相应的解决策略。文章首先介绍了多线程的基础知识,随后详细分析了每个问题的产生原因和典型场景,最后提出了实用的解决方案,旨在帮助开发者提高多线程程序的稳定性和性能。
|
21天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####