ES6 iterator 和 generator

简介: # ES6 iterator 和 generator ES6 引入了新的遍历数据的机制 Iterator 迭代器。它是一种接口,为各种不同的数据结构提供统一的访问机制。任何数据结构只要部署 Iterator 接口,就可以完成遍历操作(即依次处理该数据结构的所有成员)。基于 iterator 机制,es6 提供了很多新的操作符,例如 `for of` 以及解构、展开操作符等。 Gener

ES6 iterator 和 generator

ES6 引入了新的遍历数据的机制 Iterator 迭代器。它是一种接口,为各种不同的数据结构提供统一的访问机制。任何数据结构只要部署 Iterator 接口,就可以完成遍历操作(即依次处理该数据结构的所有成员)。基于 iterator 机制,es6 提供了很多新的操作符,例如 for of 以及解构、展开操作符等。
Generator 是 ES6 提供的一种异步编程解决方案,类似于其他语言中的协程。它是的一个函数可以在执行过程中中止,之后重新回来继续执行,而不是一次性执行完。执行 Generator 函数会返回一个遍历器对象,也就是说,Generator 函数除了状态机,还是一个遍历器对象生成函数。返回的遍历器对象,可以依次遍历 Generator 函数内部的每一个状态。
本文将基于例子阐述 iterator 和 generator 的机制和用法,主要是用法?。

实现 ArrayList 和 LinkedList

LinkedList 和 ArrayList 是两种基础的数据结构。它们都可以归类为 List 数据结构。不同处在于查询、插入、删除的复杂度不同。那么我们先实现一下两个数据结构试试,为了简单起见,只实现 get 方法,毕竟我们只要要阐述下 iterator 和 generator 的用法,意思一下即可:

  • ArrayList
class ArrayList {
  constructor(data) {
    this.list = [...data];
    this.size = data.length;
  }

  get(index) {
    return this.list[index];
  }
}
  • LinkedList
class LinkedList {
  constructor(data) {
    let last = null;
    for (let i = data.length - 1; i >= 0; i--) {
      const el = { data: { value: data[i] }, next: last };
      last = el;
    }
    this.head = last;
    this.size = data.length;
  }

  get(index) {
    let counter = 0;
    let el = this.head;

    while (counter < index) {
      el = el.next;
      counter++;
    }

    return el.data;
  }
}

可以看到,对于 LinkedList,其查找复杂度是 O(N) 的。
现在我们看下面一个例子,我们要从两个 List 对象中过滤出小于 3 的数:

const list1 = new ArrayList([1, 2, 3]);
const list2 = new LinkedList([1, 2, 3]);

const filtered1 = [];
for (let i = 0; i < list1.size; i++) {
  const element = list1.get(i);
  if (element.value < 3) {
    filtered1.push(element);
  }
}

const filtered2 = [];
for (let i = 0; i < list2.size; i++) {
  const element = list2.get(i);
  if (element.value < 3) {
    filtered2.push(element);
  }
}

乍一看好像没啥问题,但是对于 LinkedList,我们在遍历其元素时做了大量的重复工作,每次我们都重新遍历 list 去寻找 index 对应的值,这是非常低效的。为了解决这个问题,我们可以实现一个 forEach 方法:

class ArrayList {
  constructor(data) {
    this.list = data.map(value => ({ value }));
    this.size = data.length;
  }

  get(index) {
    return this.list[index];
  }

  forEach(fn) {
    for (let i = 0; i < this.list.length; i++) {
      fn(this.list[i]);
    }
  }
}

class LinkedList {
  constructor(data) {
    let last = null;
    for (let i = data.length - 1; i >= 0; i--) {
      const el = { data: { value: data[i] }, next: last };
      last = el;
    }
    this.head = last;
    this.size = data.length;
  }

  get(index) {
    let counter = 0;
    let el = this.head;

    while (counter < index) {
      el = el.next;
      counter++;
    }

    return el.data;
  }

  forEach(fn) {
    let element = this.head;

    while (element !== null) {
      fn(element.data);
      element = element.next;
    }
  }
}    

看上去很完美,我们只要调用 forEach 方法来遍历 list 即可:

const filtered = [];
list.forEach((element) => {
  if (element.value < 3) {
    filtered.push(element);
  }
});

但是,这个方法还有两个缺点没有解决:

  • 不能从循环中跳出,即无法执行 break 操作
  • 无法使用 iterator 支持的一些语法模式,例如展开操作符 ..., for of 循环

这个时候,就需要我们的 iterator 上场了。

实现 list 的 iterator

ES6 规定,默认的 Iterator 接口部署在数据结构的 Symbol.iterator 属性,或者说,一个数据结构只要具有 Symbol.iterator 属性,就可以认为是“可遍历的”(iterable)。Symbol.iterator 属性本身是一个函数,就是当前数据结构默认的遍历器生成函数。执行这个函数,就会返回一个遍历器。至于属性名 Symbol.iterator,它是一个表达式,返回 Symbol 对象的iterator 属性,这是一个预定义好的、类型为 Symbol 的特殊值。

class ArrayList {
  constructor(data) {
    this.list = data.map(value => ({ value }));
    this.size = data.length;
  }

  get(index) {
    return this.list[index];
  }

  forEach(fn) {
    for (let i = 0; i < this.list.length; i++) {
      fn(this.list[i]);
    }
  }

  [Symbol.iterator]() {
    const self = this;
    let i = 0;

    return {
      next() {
        let value;
        let done = true;
        if (self.list[i] !== undefined) {
          value = self.list[i];
          done = false;
          i += 1;
        }
        return {
          value,
          done
        };
      }
    };
  }
}

class LinkedList {
  constructor(data) {
    let last = null;
    for (let i = data.length - 1; i >= 0; i--) {
      const el = { data: { value: data[i] }, next: last };
      last = el;
    }
    this.head = last;
    this.size = data.length;
  }

  get(index) {
    let counter = 0;
    let el = this.head;

    while (counter < index) {
      el = el.next;
      counter++;
    }

    return el.data;
  }

  forEach(fn) {
    let element = this.head;

    while (element !== null) {
      fn(element.data);
      element = element.next;
    }
  }

  [Symbol.iterator]() {
    let el = this.head;

    return {
      next() {
        let value;
        let done = true;

        if (el !== null) {
          value = el.data;
          done = false;
          el = el.next;
        }
        return {
          value,
          done
        };
      }
    };
  }
}

此时,我们可以使用 for of 和展开操作符了:

const list = new LinkedList();

for (let element of list) {
    console.log(element);
}

console.log([...list]);

到此,我们发现的问题都用 iterator 解决了。然而我们实现的 next 方法是易出错的,而且看上去很不直观。这个时候,generator 就要派上用场了。

使用 generator

ES6 引入了 generator 函数,它和普通函数类似(不过函数前面需要加个 *),但是能在一次执行中多次返回。这是因为它内部会返回一个 generator 对象,这个对象实现了 iterator 协议,也就是说,它返回的也是一个迭代器对象。在 generator 函数中,提供了 yield 操作符。yield操作符表达式对应了每次调用 next 方法得到的结果。这意味着我们能像写 forEach 一样,直接在一个循环中调用 yield 来实现迭代器:

class ForEachLinkedListIterator {
  *[Symbol.iterator]() {
    let element = this.head;

    while (element !== null) {
      yield element.data;
      element = element.next;
    }
  }
}

class ForEachArrayListIterator {
  *[Symbol.iterator]() {
    for (let i = 0; i < this.list.length; i++) {
      yield this.list[i];
    }
  }
}

好,到此为止,我们基于 iterator 和 generator 实现了我们想要的数据结构。希望通过该例子,你能对 iterator 和 generator 有了一个直观的理解。当然,本文对于 iterator 和 generator 的基础阐述是相当不够的,这些可以去 mdn 上查看。

参考文献

相关文章
|
8天前
|
机器人 API 调度
基于 DMS Dify+Notebook+Airflow 实现 Agent 的一站式开发
本文提出“DMS Dify + Notebook + Airflow”三位一体架构,解决 Dify 在代码执行与定时调度上的局限。通过 Notebook 扩展 Python 环境,Airflow实现任务调度,构建可扩展、可运维的企业级智能 Agent 系统,提升大模型应用的工程化能力。
|
14天前
|
人工智能 数据可视化 Java
Spring AI Alibaba、Dify、LangGraph 与 LangChain 综合对比分析报告
本报告对比Spring AI Alibaba、Dify、LangGraph与LangChain四大AI开发框架,涵盖架构、性能、生态及适用场景。数据截至2025年10月,基于公开资料分析,实际发展可能随技术演进调整。
913 152
|
人工智能 前端开发 API
前端接入通义千问(Qwen)API:5 分钟实现你的 AI 问答助手
本文介绍如何在5分钟内通过前端接入通义千问(Qwen)API,快速打造一个AI问答助手。涵盖API配置、界面设计、流式响应、历史管理、错误重试等核心功能,并提供安全与性能优化建议,助你轻松集成智能对话能力到前端应用中。
651 154
|
负载均衡 Java 微服务
OpenFeign:让微服务调用像本地方法一样简单
OpenFeign是Spring Cloud中声明式微服务调用组件,通过接口注解简化远程调用,支持负载均衡、服务发现、熔断降级、自定义拦截器与编解码,提升微服务间通信开发效率与系统稳定性。
348 156
|
6天前
|
分布式计算 监控 API
DMS Airflow:企业级数据工作流编排平台的专业实践
DMS Airflow 是基于 Apache Airflow 构建的企业级数据工作流编排平台,通过深度集成阿里云 DMS(Data Management Service)系统的各项能力,为数据团队提供了强大的工作流调度、监控和管理能力。本文将从 Airflow 的高级编排能力、DMS 集成的特殊能力,以及 DMS Airflow 的使用示例三个方面,全面介绍 DMS Airflow 的技术架构与实践应用。
|
4天前
|
存储 Kubernetes Docker
部署eck收集日志到k8s
本文介绍基于ECK(Elastic Cloud on Kubernetes)在K8s中部署Elasticsearch、Kibana和Filebeat的完整流程。采用Helm方式部署ECK Operator,通过自定义YAML文件分别部署ES集群、Kibana及Filebeat,并实现日志采集与可视化。重点涵盖命名空间一致性、版本匹配、HTTPS配置禁用、资源限制、存储挂载及权限RBAC设置,支持系统日志、应用日志与容器日志的多源采集,适用于生产环境日志系统搭建。
243 94