Kubernetes 弹性伸缩全场景解读(五) - 定时伸缩组件发布与开源

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
应用实时监控服务-应用监控,每月50GB免费额度
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
简介: 前言 容器技术的发展让软件交付和运维变得更加标准化、轻量化、自动化。这使得动态调整负载的容量变成一件非常简单的事情。在 Kubernetes 中,通常只需要修改对应的 replicas 数目即可完成。


c1

作者| 阿里云容器技术专家刘中巍(莫源)

导读:Kubernetes弹性伸缩系列文章为读者一一解析了各个弹性伸缩组件的相关原理和用法。本篇文章中,阿里云容器技术专家莫源将为你带来定时伸缩组件  kubernetes-cronhpa-controller  的相关介绍与具体操作,目前该组件已经正式开源,欢迎大家一起交流探讨。

前言


容器技术的发展让软件交付和运维变得更加标准化、轻量化、自动化。这使得动态调整负载的容量变成一件非常简单的事情。在 Kubernetes 中,通常只需要修改对应的 replicas 数目即可完成。当负载的容量调整变得如此简单后,我们再回过头来看下应用的资源画像。


对于大部分互联网的在线应用而言,负载的峰谷分布是存在一定规律的。例如下图是一个典型 web 应用的负载曲线。从每天早上 8 点开始,负载开始飙高,在中午 12 点到 14 点之间,负载会回落;14 点到 18 点会迎来第二个高峰;在 18 点之后负载会逐渐回落到最低点。



c1




资源的波峰和波谷之间相差 3~4 倍左右的容量,低负载的时间会维持 8 个小时左右。如果使用纯静态的容量规划方式进行应用管理与部署,我们可以计算得出资源浪费比为 25% (计算方式: 1 - (18+416)/424 = 0.25 )。而当波峰和波谷之间的差别到达 10 倍的时候,资源浪费比就会飙升至 57% (计算方式: 1 - (18+1016)/1024 = 0.57 )。


那么当我们面对这么多的资源浪费时,是否可以通过弹性的方式来解决呢?


标准的 HPA 是基于指标阈值进行伸缩的,常见的指标主要是 CPU、内存,当然也可以通过自定义指标例如 QPS、连接数等进行伸缩。但是这里存在一个问题:基于资源的伸缩存在一定的时延,这个时延主要包含:采集时延(分钟级) + 判断时延(分钟级) + 伸缩时延(分钟级)。而对于上图中,我们可以发现负载的峰值毛刺还是非常尖锐的,这有可能会由于 HPA 分钟级别的伸缩时延造成负载数目无法及时变化,短时间内应用的整体负载飙高,响应时间变慢。特别是对于一些游戏业务而言,由于负载过高带来的业务抖动会造成玩家非常差的体验。


为了解决这个场景,阿里云容器服务提供了 kube-cronhpa-controller,专门应对资源画像存在周期性的场景。开发者可以根据资源画像的周期性规律,定义 time schedule,提前扩容好资源,而在波谷到来后定时回收资源。底层再结合 cluster-autoscaler 的节点伸缩能力,提供资源成本的节约。

使用方式


cronhpa 是基于 CRD 的方式开发的 controller,使用 cronhpa 的方式非常简单,整体的使用习惯也尽可能的和 HPA 保持一致。代码仓库地址

1. 安装 CRD

kubectl apply -f config/crds/autoscaling_v1beta1_cronhorizontalpodautoscaler.yaml

2. 安装 RBAC 授权

# create ClusterRole 
kubectl apply -f config/rbac/rbac_role.yaml
# create ClusterRolebinding and ServiceAccount 
kubectl apply -f config/rbac/rbac_role_binding.yaml

3. 部署 kubernetes-cronhpa-controller

kubectl apply -f config/deploy/deploy.yaml

4. 验证 kubernetes-cronhpa-controller 安装状态

kubectl get deploy kubernetes-cronhpa-controller -n kube-system -o wide 
kubernetes-cronhpa-controller git:(master)  kubectl get deploy kubernetes-cronhpa-controller -n kube-system
NAME                            DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
kubernetes-cronhpa-controller   1         1         1            1           49s

运行一个 cronhpa 的 demo


安装了 kubernetes-cronhpa-controller 后,我们可以通过一个简单的 demo 进行功能的验证。在部署前,我们先看下一个标准的 cronhpa 的定义。

apiVersion: autoscaling.alibabacloud.com/v1beta1
kind: CronHorizontalPodAutoscaler
metadata:
  labels:
    controller-tools.k8s.io: "1.0"
  name: cronhpa-sample
  namespace: default 
spec:
   scaleTargetRef:
      apiVersion: apps/v1beta2
      kind: Deployment
      name: nginx-deployment-basic
   jobs:
   - name: "scale-down"
     schedule: "30 */1 * * * *"
     targetSize: 1
   - name: "scale-up"
     schedule: "0 */1 * * * *"
     targetSize: 3


其中 scaleTargetRef 字段负责描述伸缩的对象,jobs 中定义了扩展的 crontab 定时任务。在这个例子中,设定的是每分钟的第 0 秒扩容到 3 个 Pod,每分钟的第 30s 缩容到 1 个 Pod。如果执行正常,我们可以在 30s 内看到负载数目的两次变化。

1. 部署 demo 应用与 cronhpa 的配置

kubectl apply -f examples/deployment_cronhpa.yaml

2. 检查 demo 应用副本数目

kubectl get deploy nginx-deployment-basic 
kubernetes-cronhpa-controller git:(master)  kubectl get deploy nginx-deployment-basic
NAME                     DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
nginx-deployment-basic   2         2         2            2           9s

3. 查看 cronhpa 的状态 ,确认 cronhpa 的 job 已提交

kubectl describe cronhpa cronhpa-sample 
Name:         cronhpa-sample
Namespace:    default
Labels:       controller-tools.k8s.io=1.0
Annotations:  kubectl.kubernetes.io/last-applied-configuration:
                {"apiVersion":"autoscaling.alibabacloud.com/v1beta1","kind":"CronHorizontalPodAutoscaler","metadata":{"annotations":{},"labels":{"controll...
API Version:  autoscaling.alibabacloud.com/v1beta1
Kind:         CronHorizontalPodAutoscaler
Metadata:
  Creation Timestamp:  2019-04-14T10:42:38Z
  Generation:          1
  Resource Version:    4017247
  Self Link:           /apis/autoscaling.alibabacloud.com/v1beta1/namespaces/default/cronhorizontalpodautoscalers/cronhpa-sample
  UID:                 05e41c95-5ea2-11e9-8ce6-00163e12e274
Spec:
  Jobs:
    Name:         scale-down
    Schedule:     30 */1 * * * *
    Target Size:  1
    Name:         scale-up
    Schedule:     0 */1 * * * *
    Target Size:  3
  Scale Target Ref:
    API Version:  apps/v1beta2
    Kind:         Deployment
    Name:         nginx-deployment-basic
Status:
  Conditions:
    Job Id:           38e79271-9a42-4131-9acd-1f5bfab38802
    Last Probe Time:  2019-04-14T10:43:02Z
    Message:
    Name:             scale-down
    Schedule:         30 */1 * * * *
    State:            Submitted
    Job Id:           a7db95b6-396a-4753-91d5-23c2e73819ac
    Last Probe Time:  2019-04-14T10:43:02Z
    Message:
    Name:             scale-up
    Schedule:         0 */1 * * * *
    State:            Submitted
Events:               <none>

4. 等待一段时间,查看 cronhpa 的运行状态。

kubernetes-cronhpa-controller git:(master) kubectl describe cronhpa cronhpa-sample
Name:         cronhpa-sample
Namespace:    default
Labels:       controller-tools.k8s.io=1.0
Annotations:  kubectl.kubernetes.io/last-applied-configuration:
                {"apiVersion":"autoscaling.alibabacloud.com/v1beta1","kind":"CronHorizontalPodAutoscaler","metadata":{"annotations":{},"labels":{"controll...
API Version:  autoscaling.alibabacloud.com/v1beta1
Kind:         CronHorizontalPodAutoscaler
Metadata:
  Creation Timestamp:  2019-04-15T06:41:44Z
  Generation:          1
  Resource Version:    15673230
  Self Link:           /apis/autoscaling.alibabacloud.com/v1beta1/namespaces/default/cronhorizontalpodautoscalers/cronhpa-sample
  UID:                 88ea51e0-5f49-11e9-bd0b-00163e30eb10
Spec:
  Jobs:
    Name:         scale-down
    Schedule:     30 */1 * * * *
    Target Size:  1
    Name:         scale-up
    Schedule:     0 */1 * * * *
    Target Size:  3
  Scale Target Ref:
    API Version:  apps/v1beta2
    Kind:         Deployment
    Name:         nginx-deployment-basic
Status:
  Conditions:
    Job Id:           84818af0-3293-43e8-8ba6-6fd3ad2c35a4
    Last Probe Time:  2019-04-15T06:42:30Z
    Message:          cron hpa job scale-down executed successfully
    Name:             scale-down
    Schedule:         30 */1 * * * *
    State:            Succeed
    Job Id:           f8579f11-b129-4e72-b35f-c0bdd32583b3
    Last Probe Time:  2019-04-15T06:42:20Z
    Message:
    Name:             scale-up
    Schedule:         0 */1 * * * *
    State:            Submitted
Events:
  Type    Reason   Age   From                            Message
  ----    ------   ----  ----                            -------
  Normal  Succeed  5s    cron-horizontal-pod-autoscaler  cron hpa job scale-down executed successfully


此时可以在 event 中发现负载的定时伸缩已经生效。

最后


kubernetes-cronhpa-controller 可以很好的解决拥有周期性资源画像的负载弹性,结合底层的 cluster-autoscaler 可以降低大量的资源成本。目前 kubernetes-cronhpa-controller 已经正式开源,更详细的用法与文档请查阅代码仓库的文档,欢迎开发者提交 issue 与 pr。

Kubernetes 弹性伸缩系列文章目录



扫描下方二维码添加小助手,与 8000 位云原生爱好者讨论技术趋势,实战进阶!进群暗号:公司-岗位-城市

d3

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
15天前
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。
|
存储 Kubernetes 监控
基于Kubernetes的电商平台部署:实现高可用、弹性伸缩与容器化管理
基于Kubernetes的电商平台部署:实现高可用、弹性伸缩与容器化管理
|
3月前
|
弹性计算 Kubernetes 算法
AHPA:Kubernetes弹性伸缩的预言家,揭秘未来资源使用的神秘面纱!
【8月更文挑战第8天】在云原生应用中,Kubernetes已成为部署标准。面对不断扩大的集群与应用规模,有效资源管理和弹性伸缩成为关键。AHPA(自适应历史感知预测算法)作为先进的预测技术,通过分析历史数据预测资源需求并自动调整Kubernetes资源分配。以一个在线零售平台为例,通过AHPA识别流量周期性变化,在节假日高峰期前自动增加Pod数量,保证服务稳定;而在平峰期减少Pod数量,节省资源。AHPA为Kubernetes提供了智能化的弹性伸缩方案,提高了应用稳定性和资源利用率。
71 7
|
6月前
|
Kubernetes Cloud Native 网络协议
云原生|kubernetes部署和运行维护中的错误汇总(不定时更新)
云原生|kubernetes部署和运行维护中的错误汇总(不定时更新)
1908 0
|
弹性计算 Kubernetes 安全
基于 Armory 进行 Kubernetes 集群的弹性伸缩
想象一下,假设亚马逊每年只有一天不可用。按照这个数值估算,他们的业务将会约有 99.7% 的可用性,从表面上看这是相当合理的。然而,在过去的 2020 年,亚马逊的收入接近 4000 亿美元。基于 99.7% 而不是 100% 的可用性将花费亚马逊超过 10 亿美元。哪怕停机时间只是那么一点点,也会让公司的业务损失惨重。
120 0
|
机器学习/深度学习 数据采集 弹性计算
甩掉容量规划炸弹:用 AHPA 实现 Kubernetes 智能弹性伸缩
我们提出了一种智能化弹性伸缩方案 AHPA,可以根据历史时序数据进行主动预测,提前扩容,避免弹性滞后。同时,会根据实时数据动态调整主动预测结果,兼容周期变动等场景。
294 2
甩掉容量规划炸弹:用 AHPA 实现 Kubernetes 智能弹性伸缩
|
弹性计算 Kubernetes Cloud Native
云原生之容器编排实践-SpringBoot应用以Deployment方式部署到minikube以及弹性伸缩
云原生之容器编排实践-SpringBoot应用以Deployment方式部署到minikube以及弹性伸缩
242 0
|
运维 Kubernetes Cloud Native
Kubernetes 应用通过 Service Mesh 进行流量切分与灰度发布|学习笔记(二)
快速学习Kubernetes 应用通过 Service Mesh 进行流量切分与灰度发布
Kubernetes 应用通过 Service Mesh 进行流量切分与灰度发布|学习笔记(二)
|
运维 Kubernetes Cloud Native
Kubernetes 应用通过 Service Mesh 进行流量切分与灰度发布|学习笔记(一)
快速学习Kubernetes 应用通过 Service Mesh 进行流量切分与灰度发布
Kubernetes 应用通过 Service Mesh 进行流量切分与灰度发布|学习笔记(一)
|
运维 Kubernetes Cloud Native
Kubernetes 应用通过 Service Mesh 进行流量切分与灰度发布|学习笔记(一)
快速学习 Kubernetes 应用通过 Service Mesh 进行流量切分与灰度发布
Kubernetes 应用通过 Service Mesh 进行流量切分与灰度发布|学习笔记(一)

相关产品

  • 容器服务Kubernetes版