Write a function to find the longest common prefix string amongst an array of strings.
public String longestCommonPrefix(String[] strs) {
if (strs == null || strs.length == 0)
return "";
String prefix = strs[0];
for (int i = 1; i < strs.length; i++) {
int j = 0;
while (j < prefix.length() && j < strs[i].length()
&& prefix.charAt(j) == strs[i].charAt(j)) {
j++;
}
if (j == 0) {
return "";
}
prefix = prefix.substring(0, j);
}
return prefix;
}
提交通过之后这个又可以看别人写的优秀程序。
Approach #1 (Horizontal scanning)
public String longestCommonPrefix(String[] strs) {
if (strs.length == 0) return "";
String prefix = strs[0];
for (int i = 1; i < strs.length; i++)
while (strs[i].indexOf(prefix) != 0) {
prefix = prefix.substring(0, prefix.length() - 1);
if (prefix.isEmpty()) return "";
}
return prefix;
}
这段代码我是打断点跟着才看懂的,每次indexOf的返回值是0,也就是说包含这个子串才跳出,不然一个字符一个字符的减。直到找到为止。这里介绍一下indexOf的用法。
indexOf()定义和用法
indexOf() 方法可返回某个指定的字符串值在字符串中首次出现的位置。indexOf()的用法:返回字符中indexof(string)中字串string在父串中首次出现的位置,从0开始!没有返回-1;方便判断和截取字符串!
语法
stringObject.indexOf(searchvalue,fromindex)
参数 描述
searchvalue 必需。规定需检索的字符串值。
fromindex 可选的整数参数。规定在字符串中开始检索的位置。它的合法取值是 0到 - 1。如省略该参数,则将从字符串的首字符开始检索。
说明
该方法将从头到尾地检索字符串 stringObject,看它是否含有子串 searchvalue。开始检索的位置在字符串的 fromindex 处或字符串的开头(没有指定 fromindex 时)。如果找到一个 searchvalue,则返回 searchvalue 的第一次出现的位置。stringObject 中的字符位置是从 0 开始的。
提示和注释
注释:indexOf() 方法对大小写敏感!
注释:如果要检索的字符串值没有出现,则该方法返回 -1。
实例
在本例中,我们将在 “Hello world!” 字符串内进行不同的检索:
"); document.write(str.indexOf("World") + "
"); document.write(str.indexOf("world"));
以上代码的输出:
0 -1 6
Approach #2 (Vertical scanning)
public String longestCommonPrefix(String[] strs) {
if (strs == null || strs.length == 0) return "";
for (int i = 0; i < strs[0].length() ; i++){
char c = strs[0].charAt(i);
for (int j = 1; j < strs.length; j ++) {
if (i == strs[j].length() || strs[j].charAt(i) != c)
return strs[0].substring(0, i);
}
}
return strs[0];
}
Approach #3 (Divide and conquer)
public String longestCommonPrefix(String[] strs) {
if (strs == null || strs.length == 0) return "";
return longestCommonPrefix(strs, 0 , strs.length - 1);
}
private String longestCommonPrefix(String[] strs, int l, int r) {
if (l == r) {
return strs[l];
}
else {
int mid = (l + r)/2;
String lcpLeft = longestCommonPrefix(strs, l , mid);
String lcpRight = longestCommonPrefix(strs, mid + 1,r);
return commonPrefix(lcpLeft, lcpRight);
}
}
String commonPrefix(String left,String right) {
int min = Math.min(left.length(), right.length());
for (int i = 0; i < min; i++) {
if ( left.charAt(i) != right.charAt(i) )
return left.substring(0, i);
}
return left.substring(0, min);
}
Approach #4 (Binary search)
public String longestCommonPrefix(String[] strs) {
if (strs == null || strs.length == 0)
return "";
int minLen = Integer.MAX_VALUE;
for (String str : strs)
minLen = Math.min(minLen, str.length());
int low = 1;
int high = minLen;
while (low <= high) {
int middle = (low + high) / 2;
if (isCommonPrefix(strs, middle))
low = middle + 1;
else
high = middle - 1;
}
return strs[0].substring(0, (low + high) / 2);
}
private boolean isCommonPrefix(String[] strs, int len){
String str1 = strs[0].substring(0,len);
for (int i = 1; i < strs.length; i++)
if (!strs[i].startsWith(str1))
return false;
return true;
}
Further Thoughts / Follow up
public String longestCommonPrefix(String q, String[] strs) {
if (strs == null || strs.length == 0)
return "";
if (strs.length == 1)
return strs[0];
Trie trie = new Trie();
for (int i = 1; i < strs.length ; i++) {
trie.insert(strs[i]);
}
return trie.searchLongestPrefix(q);
}
class TrieNode {
// R links to node children
private TrieNode[] links;
private final int R = 26;
private boolean isEnd;
// number of children non null links
private int size;
public void put(char ch, TrieNode node) {
links[ch -'a'] = node;
size++;
}
public int getLinks() {
return size;
}
//assume methods containsKey, isEnd, get, put are implemented as it is described
//in https://leetcode.com/articles/implement-trie-prefix-tree/)
}
public class Trie {
private TrieNode root;
public Trie() {
root = new TrieNode();
}
//assume methods insert, search, searchPrefix are implemented as it is described
//in https://leetcode.com/articles/implement-trie-prefix-tree/)
private String searchLongestPrefix(String word) {
TrieNode node = root;
StringBuilder prefix = new StringBuilder();
for (int i = 0; i < word.length(); i++) {
char curLetter = word.charAt(i);
if (node.containsKey(curLetter) && (node.getLinks() == 1) && (!node.isEnd())) {
prefix.append(curLetter);
node = node.get(curLetter);
}
else
return prefix.toString();
}
return prefix.toString();
}
}