前端智能化漫谈 (3) - pix2code推理部分解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: # 前端智能化漫谈 (3) - pix2code推理部分解析 上一节我们将pix2code的流程梳理了一遍,相信大家已经都可以跑起来了。 在谈pix2code的算法改进之前,关于训练和推理过程还有若干细节我们还需要进一步讨论一下。 ## onehot编码 上次我们讲到create_binary_representation,就是将单词转换成one hot编码。 ```

前端智能化漫谈 (3) - pix2code推理部分解析

上一节我们将pix2code的流程梳理了一遍,相信大家已经都可以跑起来了。
在谈pix2code的算法改进之前,关于训练和推理过程还有若干细节我们还需要进一步讨论一下。

onehot编码

上次我们讲到create_binary_representation,就是将单词转换成one hot编码。

    def create_binary_representation(self):
        if sys.version_info >= (3,):
            items = self.vocabulary.items()
        else:
            items = self.vocabulary.iteritems()
        for key, value in items:
            binary = np.zeros(self.size)
            binary[value] = 1
            self.binary_vocabulary[key] = binary

生成的one hot编码如下所示,有20个token,所以每一个token是一个20维的向量:

<START>-> 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
<END>-> 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
 -> 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
stack-> 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
{-> 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
-> 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
row-> 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
switch-> 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
}-> 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
label-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
,-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.
btn-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.
radio-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.
footer-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.
btn-home-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.
btn-notifications-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.
check-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.
slider-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.
btn-dashboard-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.
btn-search-> 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.

上面这个存在bin目录下的words.vocab文件中,是我们的词表。将来预测出来的是这20项中每一项的概率,最终我们还要反查词表来确定内容。

其中几个常量定义如下:

START_TOKEN = "<START>"
END_TOKEN = "<END>"
PLACEHOLDER = " "
SEPARATOR = '->'

推理

解释了one hot编码之后,训练部分的逻辑大家应该比较清楚了。但是对于如何利用训练好的结果进行推理,可能还是有疑惑。所以我们下面讲解下推理的过程。

首先是加载模型,并且读取图片:

meta_dataset = np.load("{}/meta_dataset.npy".format(trained_weights_path))
input_shape = meta_dataset[0]
output_size = meta_dataset[1]

model = pix2code(input_shape, output_size, trained_weights_path)
model.load(trained_model_name)

sampler = Sampler(trained_weights_path, input_shape, output_size, CONTEXT_LENGTH)

file_name = basename(input_path)[:basename(input_path).find(".")]
evaluation_img = Utils.get_preprocessed_img(input_path, IMAGE_SIZE)

然后是核心的搜索逻辑。搜索模式有两种,一种是greedy模式,另一种是指定深度的beam search:

if search_method == "greedy":
    result, _ = sampler.predict_greedy(model, np.array([evaluation_img]))
    print("Result greedy: {}".format(result))
else:
    beam_width = int(search_method)
    print("Search with beam width: {}".format(beam_width))
    result, _ = sampler.predict_beam_search(model, np.array([evaluation_img]), beam_width=beam_width)
    print("Result beam: {}".format(result))

贪婪模式

我们先看下greedy模式下的玩法:

    def predict_greedy(self, model, input_img, require_sparse_label=True, sequence_length=150, verbose=True):
        current_context = [self.voc.vocabulary[PLACEHOLDER]] * (self.context_length - 1)
        current_context.append(self.voc.vocabulary[START_TOKEN])
        if require_sparse_label:
            current_context = Utils.sparsify(current_context, self.output_size)

current_context先用占位符填满,然后变成one hot编码,变成下面这样:

[[0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

然后我们继续往下看:

        predictions = START_TOKEN
        out_probas = []

        for i in range(0, sequence_length):
            if verbose:
                print("predicting {}/{}...".format(i, sequence_length))

如果想看进度条,就可以将verbose开关打开。打开之后的过程是下面这样的:

predicting 0/150...
<START>stack
predicting 1/150...
<START>stack{
predicting 2/150...
<START>stack{

predicting 3/150...
<START>stack{
row
predicting 4/150...
<START>stack{
row{
predicting 5/150...
<START>stack{
row{

predicting 6/150...
<START>stack{
row{
btn-dashboard

下面开始进入预测的部分:

            probas = model.predict(input_img, np.array([current_context]))
            prediction = np.argmax(probas)
            out_probas.append(probas)

probas是根据训练结果计算的在当前情况下的对于20个标签的概率情况。
例如第一步时假设是这样的:

[3.5372774e-10 1.5484280e-15 3.7052250e-14 9.9999964e-01 4.1679780e-07
 2.5872908e-14 3.7647421e-15 4.0136690e-14 7.4600746e-14 2.8354120e-13
 3.3076447e-13 2.4662578e-15 2.2618040e-13 2.2254247e-14 4.2132672e-10
 2.3889449e-10 1.8945574e-13 1.2084879e-13 1.7556612e-10 3.4896117e-10]

此时有99.99%的概率是第3个,prediction的结果为3。

下面我们开始处理将新预测的结果添加到current_context里面,因为RNN网络是根据序列预测的。我们先建立一个new_context,然后将current_context的所有内容上移一位,也就是将第0行不要了,从第1行开始取到最后一行:

            new_context = []
            for j in range(1, self.context_length):
                new_context.append(current_context[j])

下面将我们刚才新预测出来的添加到最后一行:

            if require_sparse_label:
                sparse_label = np.zeros(self.output_size)
                sparse_label[prediction] = 1
                new_context.append(sparse_label)
            else:
                new_context.append(prediction)

            current_context = new_context

接着,我们去词汇表里查一下prediction所对应的单词,记得我们本讲开头所介绍的词表么,就是查那个表:

            predictions += self.voc.token_lookup[prediction]

最后,我们判断一下预测结果是不是到了END_TOKEN,如果是的话就结束本轮预测。

            if self.voc.token_lookup[prediction] == END_TOKEN:
                break

        return predictions, out_probas
目录
相关文章
|
7天前
|
前端开发
深入解析React Hooks:构建高效且可维护的前端应用
本文将带你走进React Hooks的世界,探索这一革新特性如何改变我们构建React组件的方式。通过分析Hooks的核心概念、使用方法和最佳实践,文章旨在帮助你充分利用Hooks来提高开发效率,编写更简洁、更可维护的前端代码。我们将通过实际代码示例,深入了解useState、useEffect等常用Hooks的内部工作原理,并探讨如何自定义Hooks以复用逻辑。
|
4天前
|
人工智能 前端开发 JavaScript
拿下奇怪的前端报错(一):报错信息是一个看不懂的数字数组Buffer(475) [Uint8Array],让AI大模型帮忙解析
本文介绍了前端开发中遇到的奇怪报错问题,特别是当错误信息不明确时的处理方法。作者分享了自己通过还原代码、试错等方式解决问题的经验,并以一个Vue3+TypeScript项目的构建失败为例,详细解析了如何从错误信息中定位问题,最终通过解读错误信息中的ASCII码找到了具体的错误文件。文章强调了基础知识的重要性,并鼓励读者遇到类似问题时不要慌张,耐心分析。
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
前端大模型入门(三):编码(Tokenizer)和嵌入(Embedding)解析 - llm的输入
本文介绍了大规模语言模型(LLM)中的两个核心概念:Tokenizer和Embedding。Tokenizer将文本转换为模型可处理的数字ID,而Embedding则将这些ID转化为能捕捉语义关系的稠密向量。文章通过具体示例和代码展示了两者的实现方法,帮助读者理解其基本原理和应用场景。
|
4天前
|
JSON 前端开发 JavaScript
前端模块打包器的深度解析
【10月更文挑战第13天】前端模块打包器的深度解析
|
4天前
|
存储 前端开发 JavaScript
前端模块化打包工具的深度解析
【10月更文挑战第13天】前端模块化打包工具的深度解析
|
5天前
|
Web App开发 存储 前端开发
前端开发必备:requestAnimationFrame、setInterval、setTimeout——功能解析与优劣对比
前端开发必备:requestAnimationFrame、setInterval、setTimeout——功能解析与优劣对比
15 0
|
5天前
|
缓存 前端开发 安全
前端开发者必备:HTTP状态码含义与用途解析,常见错误码产生原因及解决策略
前端开发者必备:HTTP状态码含义与用途解析,常见错误码产生原因及解决策略
32 0
|
5天前
|
存储 人工智能 前端开发
前端大模型应用笔记(三):Vue3+Antdv+transformers+本地模型实现浏览器端侧增强搜索
本文介绍了一个纯前端实现的增强列表搜索应用,通过使用Transformer模型,实现了更智能的搜索功能,如使用“番茄”可以搜索到“西红柿”。项目基于Vue3和Ant Design Vue,使用了Xenova的bge-base-zh-v1.5模型。文章详细介绍了从环境搭建、数据准备到具体实现的全过程,并展示了实际效果和待改进点。
|
5天前
|
JavaScript 前端开发 程序员
前端学习笔记——node.js
前端学习笔记——node.js
17 0
|
5天前
|
人工智能 自然语言处理 运维
前端大模型应用笔记(一):两个指令反过来说大模型就理解不了啦?或许该让第三者插足啦 -通过引入中间LLM预处理用户输入以提高多任务处理能力
本文探讨了在多任务处理场景下,自然语言指令解析的困境及解决方案。通过增加一个LLM解析层,将复杂的指令拆解为多个明确的步骤,明确操作类型与对象识别,处理任务依赖关系,并将自然语言转化为具体的工具命令,从而提高指令解析的准确性和执行效率。

推荐镜像

更多