Java内存缓存-通过Map定制简单缓存

简介: 缓存在程序中,缓存是一个高速数据存储层,其中存储了数据子集,且通常是短暂性存储,这样日后再次请求此数据时,速度要比访问数据的主存储位置快。通过缓存,可以高效地重用之前检索或计算的数据。为什么要用缓存场景在Java应用中,对于访问频率高,更新少的数据,通常的方案是将这类数据加入缓存中,相对从数据库中读取,读缓存效率会有很大提升。

缓存

在程序中,缓存是一个高速数据存储层,其中存储了数据子集,且通常是短暂性存储,这样日后再次请求此数据时,速度要比访问数据的主存储位置快。通过缓存,可以高效地重用之前检索或计算的数据。

为什么要用缓存

image

场景

在Java应用中,对于访问频率高,更新少的数据,通常的方案是将这类数据加入缓存中,相对从数据库中读取,读缓存效率会有很大提升。

在集群环境下,常用的分布式缓存有Redis、Memcached等。但在某些业务场景上,可能不需要去搭建一套复杂的分布式缓存系统,在单机环境下,通常是会希望使用内部的缓存(LocalCache)。

方案

  • 基于JSR107规范自研
  • 基于ConcurrentHashMap实现数据缓存

JSR107规范目标

  • 为应用程序提供缓存Java对象的功能。
  • 定义了一套通用的缓存概念和工具。
  • 最小化开发人员使用缓存的学习成本。
  • 最大化应用程序在使用不同缓存实现之间的可移植性。
  • 支持进程内和分布式的缓存实现。

JSR107规范核心概念

  • Java Caching定义了5个核心接口,分别是CachingProvider, CacheManager, Cache, Entry 和 Expiry。
  • CachingProvider定义了创建、配置、获取、管理和控制多个CacheManager。一个应用可以在运行期访问多个CachingProvider。
  • CacheManager定义了创建、配置、获取、管理和控制多个唯一命名的Cache,这些Cache存在于- CacheManager的上下文中。一个CacheManager仅被一个CachingProvider所拥有。
  • Cache是一个类似Map的数据结构并临时存储以Key为索引的值。一个Cache仅被一个CacheManager所拥有。
  • Entry是一个存储在Cache中的key-value对。
  • 每一个存储在Cache中的条目有一个定义的有效期,即Expiry Duration。
    一旦超过这个时间,条目为过期的状态。一旦过期,条目将不可访问、更新和删除。缓存有效期可以通过ExpiryPolicy设置。

小例子

使用Map来实现一个简单的缓存功能

MapCacheDemo.java

package me.xueyao.cache.java;

import java.lang.ref.SoftReference;
import java.util.Optional;
import java.util.concurrent.ConcurrentHashMap;


/**
 * @author simon
 * 用map实现一个简单的缓存功能
 */
public class MapCacheDemo {

    /**
     * 使用  ConcurrentHashMap,线程安全的要求。
     * 我使用SoftReference <Object>  作为映射值,因为软引用可以保证在抛出OutOfMemory之前,如果缺少内存,将删除引用的对象。
     * 在构造函数中,我创建了一个守护程序线程,每5秒扫描一次并清理过期的对象。
     */
    private static final int CLEAN_UP_PERIOD_IN_SEC = 5;

    private final ConcurrentHashMap<String, SoftReference<CacheObject>> cache = new ConcurrentHashMap<>();

    public MapCacheDemo() {
        Thread cleanerThread = new Thread(() -> {
            while (!Thread.currentThread().isInterrupted()) {
                try {
                    Thread.sleep(CLEAN_UP_PERIOD_IN_SEC * 1000);
                    cache.entrySet().removeIf(entry ->
                            Optional.ofNullable(entry.getValue())
                                    .map(SoftReference::get)
                                    .map(CacheObject::isExpired)
                                    .orElse(false));
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                }
            }
        });
        cleanerThread.setDaemon(true);
        cleanerThread.start();
    }

    public void add(String key, Object value, long periodInMillis) {
        if (key == null) {
            return;
        }
        if (value == null) {
            cache.remove(key);
        } else {
            long expiryTime = System.currentTimeMillis() + periodInMillis;
            cache.put(key, new SoftReference<>(new CacheObject(value, expiryTime)));
        }
    }

    public void remove(String key) {
        cache.remove(key);
    }

    public Object get(String key) {
        return Optional.ofNullable(cache.get(key)).map(SoftReference::get).filter(cacheObject -> !cacheObject.isExpired()).map(CacheObject::getValue).orElse(null);
    }

    public void clear() {
        cache.clear();
    }

    public long size() {
        return cache.entrySet().stream().filter(entry -> Optional.ofNullable(entry.getValue()).map(SoftReference::get).map(cacheObject -> !cacheObject.isExpired()).orElse(false)).count();
    }

    /**
     * 缓存对象value
     */
    private static class CacheObject {
        private Object value;
        private long expiryTime;

        private CacheObject(Object value, long expiryTime) {
            this.value = value;
            this.expiryTime = expiryTime;
        }

        boolean isExpired() {
            return System.currentTimeMillis() > expiryTime;
        }

        public Object getValue() {
            return value;
        }

        public void setValue(Object value) {
            this.value = value;
        }
    }
}

代码测试类MapCacheDemoTests.java

package me.xueyao.cache.java;

public class MapCacheDemoTests {
    public static void main(String[] args) throws InterruptedException {
        MapCacheDemo mapCacheDemo = new MapCacheDemo();
        mapCacheDemo.add("uid_10001", "{1}", 5 * 1000);
        mapCacheDemo.add("uid_10002", "{2}", 5 * 1000);
        mapCacheDemo.add("uid_10003", "{3}", 5 * 1000);
        System.out.println("从缓存中取出值:" + mapCacheDemo.get("uid_10001"));
        Thread.sleep(5000L);
        System.out.println("5秒钟过后");
        System.out.println("从缓存中取出值:" + mapCacheDemo.get("uid_10001"));
        // 5秒后数据自动清除了~
    }
}
相关文章
|
1月前
|
存储 缓存 安全
Java内存模型深度解析:从理论到实践####
【10月更文挑战第21天】 本文深入探讨了Java内存模型(JMM)的核心概念与底层机制,通过剖析其设计原理、内存可见性问题及其解决方案,结合具体代码示例,帮助读者构建对JMM的全面理解。不同于传统的摘要概述,我们将直接以故事化手法引入,让读者在轻松的情境中领略JMM的精髓。 ####
38 6
|
21天前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
24 0
|
1月前
|
存储 Java 编译器
Java内存模型(JMM)深度解析####
本文深入探讨了Java内存模型(JMM)的工作原理,旨在帮助开发者理解多线程环境下并发编程的挑战与解决方案。通过剖析JVM如何管理线程间的数据可见性、原子性和有序性问题,本文将揭示synchronized关键字背后的机制,并介绍volatile关键字和final关键字在保证变量同步与不可变性方面的作用。同时,文章还将讨论现代Java并发工具类如java.util.concurrent包中的核心组件,以及它们如何简化高效并发程序的设计。无论你是初学者还是有经验的开发者,本文都将为你提供宝贵的见解,助你在Java并发编程领域更进一步。 ####
|
1月前
|
存储 算法 Java
Java内存管理深度剖析与优化策略####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,重点分析了堆内存的分配策略、垃圾回收算法以及如何通过调优提升应用性能。通过案例驱动的方式,揭示了常见内存泄漏的根源与解决策略,旨在为开发者提供实用的内存管理技巧,确保应用程序既高效又稳定地运行。 ####
|
23天前
|
存储 监控 算法
Java内存管理深度剖析:从垃圾收集到内存泄漏的全面指南####
本文深入探讨了Java虚拟机(JVM)中的内存管理机制,特别是垃圾收集(GC)的工作原理及其调优策略。不同于传统的摘要概述,本文将通过实际案例分析,揭示内存泄漏的根源与预防措施,为开发者提供实战中的优化建议,旨在帮助读者构建高效、稳定的Java应用。 ####
37 8
|
21天前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
25天前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
49 5
|
23天前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
23天前
|
安全 Java 程序员
Java内存模型的深入理解与实践
本文旨在深入探讨Java内存模型(JMM)的核心概念,包括原子性、可见性和有序性,并通过实例代码分析这些特性在实际编程中的应用。我们将从理论到实践,逐步揭示JMM在多线程编程中的重要性和复杂性,帮助读者构建更加健壮的并发程序。
|
28天前
|
算法 Java 开发者
Java内存管理与垃圾回收机制深度剖析####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,特别是其垃圾回收机制的工作原理、算法及实践优化策略。不同于传统的摘要概述,本文将以一个虚拟的“城市环卫系统”为比喻,生动形象地揭示Java内存管理的奥秘,旨在帮助开发者更好地理解并调优Java应用的性能。 ####

热门文章

最新文章