Java内存缓存-通过Map定制简单缓存

简介: 缓存在程序中,缓存是一个高速数据存储层,其中存储了数据子集,且通常是短暂性存储,这样日后再次请求此数据时,速度要比访问数据的主存储位置快。通过缓存,可以高效地重用之前检索或计算的数据。为什么要用缓存场景在Java应用中,对于访问频率高,更新少的数据,通常的方案是将这类数据加入缓存中,相对从数据库中读取,读缓存效率会有很大提升。

缓存

在程序中,缓存是一个高速数据存储层,其中存储了数据子集,且通常是短暂性存储,这样日后再次请求此数据时,速度要比访问数据的主存储位置快。通过缓存,可以高效地重用之前检索或计算的数据。

为什么要用缓存

image

场景

在Java应用中,对于访问频率高,更新少的数据,通常的方案是将这类数据加入缓存中,相对从数据库中读取,读缓存效率会有很大提升。

在集群环境下,常用的分布式缓存有Redis、Memcached等。但在某些业务场景上,可能不需要去搭建一套复杂的分布式缓存系统,在单机环境下,通常是会希望使用内部的缓存(LocalCache)。

方案

  • 基于JSR107规范自研
  • 基于ConcurrentHashMap实现数据缓存

JSR107规范目标

  • 为应用程序提供缓存Java对象的功能。
  • 定义了一套通用的缓存概念和工具。
  • 最小化开发人员使用缓存的学习成本。
  • 最大化应用程序在使用不同缓存实现之间的可移植性。
  • 支持进程内和分布式的缓存实现。

JSR107规范核心概念

  • Java Caching定义了5个核心接口,分别是CachingProvider, CacheManager, Cache, Entry 和 Expiry。
  • CachingProvider定义了创建、配置、获取、管理和控制多个CacheManager。一个应用可以在运行期访问多个CachingProvider。
  • CacheManager定义了创建、配置、获取、管理和控制多个唯一命名的Cache,这些Cache存在于- CacheManager的上下文中。一个CacheManager仅被一个CachingProvider所拥有。
  • Cache是一个类似Map的数据结构并临时存储以Key为索引的值。一个Cache仅被一个CacheManager所拥有。
  • Entry是一个存储在Cache中的key-value对。
  • 每一个存储在Cache中的条目有一个定义的有效期,即Expiry Duration。
    一旦超过这个时间,条目为过期的状态。一旦过期,条目将不可访问、更新和删除。缓存有效期可以通过ExpiryPolicy设置。

小例子

使用Map来实现一个简单的缓存功能

MapCacheDemo.java

package me.xueyao.cache.java;

import java.lang.ref.SoftReference;
import java.util.Optional;
import java.util.concurrent.ConcurrentHashMap;


/**
 * @author simon
 * 用map实现一个简单的缓存功能
 */
public class MapCacheDemo {

    /**
     * 使用  ConcurrentHashMap,线程安全的要求。
     * 我使用SoftReference <Object>  作为映射值,因为软引用可以保证在抛出OutOfMemory之前,如果缺少内存,将删除引用的对象。
     * 在构造函数中,我创建了一个守护程序线程,每5秒扫描一次并清理过期的对象。
     */
    private static final int CLEAN_UP_PERIOD_IN_SEC = 5;

    private final ConcurrentHashMap<String, SoftReference<CacheObject>> cache = new ConcurrentHashMap<>();

    public MapCacheDemo() {
        Thread cleanerThread = new Thread(() -> {
            while (!Thread.currentThread().isInterrupted()) {
                try {
                    Thread.sleep(CLEAN_UP_PERIOD_IN_SEC * 1000);
                    cache.entrySet().removeIf(entry ->
                            Optional.ofNullable(entry.getValue())
                                    .map(SoftReference::get)
                                    .map(CacheObject::isExpired)
                                    .orElse(false));
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                }
            }
        });
        cleanerThread.setDaemon(true);
        cleanerThread.start();
    }

    public void add(String key, Object value, long periodInMillis) {
        if (key == null) {
            return;
        }
        if (value == null) {
            cache.remove(key);
        } else {
            long expiryTime = System.currentTimeMillis() + periodInMillis;
            cache.put(key, new SoftReference<>(new CacheObject(value, expiryTime)));
        }
    }

    public void remove(String key) {
        cache.remove(key);
    }

    public Object get(String key) {
        return Optional.ofNullable(cache.get(key)).map(SoftReference::get).filter(cacheObject -> !cacheObject.isExpired()).map(CacheObject::getValue).orElse(null);
    }

    public void clear() {
        cache.clear();
    }

    public long size() {
        return cache.entrySet().stream().filter(entry -> Optional.ofNullable(entry.getValue()).map(SoftReference::get).map(cacheObject -> !cacheObject.isExpired()).orElse(false)).count();
    }

    /**
     * 缓存对象value
     */
    private static class CacheObject {
        private Object value;
        private long expiryTime;

        private CacheObject(Object value, long expiryTime) {
            this.value = value;
            this.expiryTime = expiryTime;
        }

        boolean isExpired() {
            return System.currentTimeMillis() > expiryTime;
        }

        public Object getValue() {
            return value;
        }

        public void setValue(Object value) {
            this.value = value;
        }
    }
}

代码测试类MapCacheDemoTests.java

package me.xueyao.cache.java;

public class MapCacheDemoTests {
    public static void main(String[] args) throws InterruptedException {
        MapCacheDemo mapCacheDemo = new MapCacheDemo();
        mapCacheDemo.add("uid_10001", "{1}", 5 * 1000);
        mapCacheDemo.add("uid_10002", "{2}", 5 * 1000);
        mapCacheDemo.add("uid_10003", "{3}", 5 * 1000);
        System.out.println("从缓存中取出值:" + mapCacheDemo.get("uid_10001"));
        Thread.sleep(5000L);
        System.out.println("5秒钟过后");
        System.out.println("从缓存中取出值:" + mapCacheDemo.get("uid_10001"));
        // 5秒后数据自动清除了~
    }
}
相关文章
|
4月前
|
安全 Java 应用服务中间件
Spring Boot + Java 21:内存减少 60%,启动速度提高 30% — 零代码
通过调整三个JVM和Spring Boot配置开关,无需重写代码即可显著优化Java应用性能:内存减少60%,启动速度提升30%。适用于所有在JVM上运行API的生产团队,低成本实现高效能。
420 3
|
5月前
|
存储 缓存 Java
Java数组全解析:一维、多维与内存模型
本文深入解析Java数组的内存布局与操作技巧,涵盖一维及多维数组的声明、初始化、内存模型,以及数组常见陷阱和性能优化。通过图文结合的方式帮助开发者彻底理解数组本质,并提供Arrays工具类的实用方法与面试高频问题解析,助你掌握数组核心知识,避免常见错误。
|
3月前
|
Java 大数据 Go
从混沌到秩序:Java共享内存模型如何通过显式约束驯服并发?
并发编程旨在混乱中建立秩序。本文对比Java共享内存模型与Golang消息传递模型,剖析显式同步与隐式因果的哲学差异,揭示happens-before等机制如何保障内存可见性与数据一致性,展现两大范式的深层分野。(238字)
103 4
|
3月前
|
存储 缓存 Java
【深入浅出】揭秘Java内存模型(JMM):并发编程的基石
本文深入解析Java内存模型(JMM),揭示synchronized与volatile的底层原理,剖析主内存与工作内存、可见性、有序性等核心概念,助你理解并发编程三大难题及Happens-Before、内存屏障等解决方案,掌握多线程编程基石。
|
4月前
|
缓存 监控 Kubernetes
Java虚拟机内存溢出(Java Heap Space)问题处理方案
综上所述, 解决Java Heap Space溢出需从多角度综合施策; 包括但不限于配置调整、代码审查与优化以及系统设计层面改进; 同样也不能忽视运行期监控与预警设置之重要性; 及早发现潜在风险点并采取相应补救手段至关重要.
618 17
|
8月前
|
存储 缓存 Java
【高薪程序员必看】万字长文拆解Java并发编程!(5):深入理解JMM:Java内存模型的三大特性与volatile底层原理
JMM,Java Memory Model,Java内存模型,定义了主内存,工作内存,确保Java在不同平台上的正确运行主内存Main Memory:所有线程共享的内存区域,所有的变量都存储在主存中工作内存Working Memory:每个线程拥有自己的工作内存,用于保存变量的副本.线程执行过程中先将主内存中的变量读到工作内存中,对变量进行操作之后再将变量写入主内存,jvm概念说明主内存所有线程共享的内存区域,存储原始变量(堆内存中的对象实例和静态变量)工作内存。
256 0
|
9月前
|
缓存 并行计算 PyTorch
PyTorch CUDA内存管理优化:深度理解GPU资源分配与缓存机制
本文深入探讨了PyTorch中GPU内存管理的核心机制,特别是CUDA缓存分配器的作用与优化策略。文章分析了常见的“CUDA out of memory”问题及其成因,并通过实际案例(如Llama 1B模型训练)展示了内存分配模式。PyTorch的缓存分配器通过内存池化、延迟释放和碎片化优化等技术,显著提升了内存使用效率,减少了系统调用开销。此外,文章还介绍了高级优化方法,包括混合精度训练、梯度检查点技术及自定义内存分配器配置。这些策略有助于开发者在有限硬件资源下实现更高性能的深度学习模型训练与推理。
1714 0
|
5月前
|
监控 Kubernetes Java
最新技术栈驱动的 Java 绿色计算与性能优化实操指南涵盖内存优化与能效提升实战技巧
本文介绍了基于Java 24+技术栈的绿色计算与性能优化实操指南。主要内容包括:1)JVM调优,如分代ZGC配置和结构化并发优化;2)代码级优化,包括向量API加速数据处理和零拷贝I/O;3)容器化环境优化,如K8s资源匹配和节能模式配置;4)监控分析工具使用。通过实践表明,这些优化能显著提升性能(响应时间降低40-60%)同时降低资源消耗(内存减少30-50%,CPU降低20-40%)和能耗(服务器功耗减少15-35%)。建议采用渐进式优化策略。
247 2
|
6月前
|
存储 缓存 监控
手动清除Ubuntu系统中的内存缓存的步骤
此外,只有系统管理员或具有适当权限的用户才能执行这些命令,因为这涉及到系统级的操作。普通用户尝试执行这些操作会因权限不足而失败。
1069 22
|
6月前
|
SQL 缓存 安全
深度理解 Java 内存模型:从并发基石到实践应用
本文深入解析 Java 内存模型(JMM),涵盖其在并发编程中的核心作用与实践应用。内容包括 JMM 解决的可见性、原子性和有序性问题,线程与内存的交互机制,volatile、synchronized 和 happens-before 等关键机制的使用,以及在单例模式、线程通信等场景中的实战案例。同时,还介绍了常见并发 Bug 的排查与解决方案,帮助开发者写出高效、线程安全的 Java 程序。
311 0