cassandra 集合类型及底层存储格式介绍

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云原生多模数据库 Lindorm,多引擎 多规格 0-4节点
云数据库 Tair(兼容Redis),内存型 2GB
简介: cassandra的集合类型toturist 创建带有复杂cell的user表 CREATE TABLE ks.user ( id int PRIMARY KEY, addr map, complex map

cassandra的集合类型tourist

创建带有复杂cell的user表

CREATE TABLE ks.user (
    id int PRIMARY KEY,
    addr map<text, frozen<set<text>>>,
    complex map<text, frozen<map<text, text>>>,
    listcolumn list<text>,
    setcolumn set<text>
)

插入一些数据后,查询数据如下

cassandra@cqlsh:ks> select * from user;

 id | addr                                           | complex                          | listcolumn      | setcolumn
----+------------------------------------------------+----------------------------------+-----------------+-----------------
  1 | {'bj': {'ba', 'bb'}, 'shanghai': {'sa', 'sb'}} | {'bj': {'ka': 'va', 'kb': 'vb'}} | ['a', 'b', 'c'] | {'a', 'b', 'c'}

执行bin/nodetool flush,生成sst

查看sst,文本输出

tools/bin/sstabledump /data/data2/ks/user-a92ce790a8ff11e99a3d8963a5d3f9b4/md-17-big-Data.db
[
{
  "partition" : {
    "key" : [ "1" ],
    "position" : 0
  },
  "rows" : [
    {
      "type" : "row",
      "position" : 233,
      "liveness_info" : { "tstamp" : "2019-07-18T02:43:36.011497Z" },
      "cells" : [
        { "name" : "addr", "deletion_info" : { "marked_deleted" : "2019-07-18T02:43:36.011496Z", "local_delete_time" : "2019-07-18T02:43:36Z" } },
        { "name" : "addr", "path" : [ "bj" ], "value" : ["ba", "bb"] },
        { "name" : "addr", "path" : [ "shanghai" ], "value" : ["sa", "sb"] },
        { "name" : "complex", "deletion_info" : { "marked_deleted" : "2019-07-18T02:47:55.888562Z", "local_delete_time" : "2019-07-18T02:47:55Z" } },
        { "name" : "complex", "path" : [ "bj" ], "value" : {"ka": "va", "kb": "vb"}, "tstamp" : "2019-07-18T02:47:55.888563Z" },
        { "name" : "listcolumn", "deletion_info" : { "marked_deleted" : "2019-07-18T02:56:09.386468Z", "local_delete_time" : "2019-07-18T02:56:09Z" } },
        { "name" : "listcolumn", "path" : [ "982493f0-a907-11e9-9a3d-8963a5d3f9b4" ], "value" : "a", "tstamp" : "2019-07-18T02:56:09.386469Z" },
        { "name" : "listcolumn", "path" : [ "982493f1-a907-11e9-9a3d-8963a5d3f9b4" ], "value" : "b", "tstamp" : "2019-07-18T02:56:09.386469Z" },
        { "name" : "listcolumn", "path" : [ "982493f2-a907-11e9-9a3d-8963a5d3f9b4" ], "value" : "c", "tstamp" : "2019-07-18T02:56:09.386469Z" },
        { "name" : "setcolumn", "deletion_info" : { "marked_deleted" : "2019-07-18T02:55:03.280578Z", "local_delete_time" : "2019-07-18T02:55:03Z" } },
        { "name" : "setcolumn", "path" : [ "a" ], "value" : "", "tstamp" : "2019-07-18T02:55:03.280579Z" },
        { "name" : "setcolumn", "path" : [ "b" ], "value" : "", "tstamp" : "2019-07-18T02:55:03.280579Z" },
        { "name" : "setcolumn", "path" : [ "c" ], "value" : "", "tstamp" : "2019-07-18T02:55:03.280579Z" }
      ]
    }
  ]
}

底层的集合是通过cellName+path唯一标记一个元素的。
重点看下addr及complex列, 这两列是嵌套map
{ "name" : "complex", "path" : [ "bj" ], "value" : {"ka": "va", "kb": "vb"}, "tstamp" : "2019-07-18T02:47:55.888563Z" },
但对于子map frozen<map<text, text>> 基本上是当做blob存储的,不能操作map中的子元素,这也是frozen语义。

c*是无主架构,可以多node并发写同一个集合,那如何解决冲突?答案是底层最小存储单元并不是cell,而是cell+path唯一标记的element,依赖于cell&path做单元合并的,以cell timestamp最新作为最终值
删除setcolumn中一个元素

cassandra@cqlsh:ks> update user set setcolumn = setcolumn - {'a'} where id =1;

flush后,查看刚生成的sstable, setcolumn.a写入了一个delete_info

[root@Cassandra8c32GTest005 cassandra]# tools/bin/sstabledump /data/data2/ks/user-a92ce790a8ff11e99a3d8963a5d3f9b4/md-19-big-Data.db
[
{
  "partition" : {
    "key" : [ "1" ],
    "position" : 0
  },
  "rows" : [
    {
      "type" : "row",
      "position" : 27,
      "cells" : [
        { "name" : "setcolumn", "path" : [ "a" ], "deletion_info" : { "local_delete_time" : "2019-07-18T10:03:17Z" },
          "tstamp" : "2019-07-18T10:03:17.038519Z"
        }
      ]
    }
  ]
}
]

做下手工merge,可以发现setcolumn.a value没了,写入了delete_info

bin/nodetool compact
tools/bin/sstabledump /data/data2/ks/user-a92ce790a8ff11e99a3d8963a5d3f9b4/md-22-big-Data.db
[
  {
    "partition" : {
      "key" : [ "1" ],
      "position" : 0
    },
    "rows" : [
      {
        "type" : "row",
        "position" : 236,
        "liveness_info" : { "tstamp" : "2019-07-18T02:43:36.011497Z" },
        "cells" : [
          { "name" : "addr", "deletion_info" : { "marked_deleted" : "2019-07-18T02:43:36.011496Z", "local_delete_time" : "2019-07-18T02:43:36Z" } },
          { "name" : "addr", "path" : [ "bj" ], "value" : ["ba", "bb"] },
          { "name" : "addr", "path" : [ "shanghai" ], "value" : ["sa", "sb"] },
          { "name" : "complex", "deletion_info" : { "marked_deleted" : "2019-07-18T02:47:55.888562Z", "local_delete_time" : "2019-07-18T02:47:55Z" } },
          { "name" : "complex", "path" : [ "bj" ], "value" : {"ka": "va", "kb": "vb"}, "tstamp" : "2019-07-18T02:47:55.888563Z" },
          { "name" : "listcolumn", "deletion_info" : { "marked_deleted" : "2019-07-18T02:56:09.386468Z", "local_delete_time" : "2019-07-18T02:56:09Z" } },
          { "name" : "listcolumn", "path" : [ "982493f0-a907-11e9-9a3d-8963a5d3f9b4" ], "value" : "a", "tstamp" : "2019-07-18T02:56:09.386469Z" },
          { "name" : "listcolumn", "path" : [ "982493f1-a907-11e9-9a3d-8963a5d3f9b4" ], "value" : "b", "tstamp" : "2019-07-18T02:56:09.386469Z" },
          { "name" : "listcolumn", "path" : [ "982493f2-a907-11e9-9a3d-8963a5d3f9b4" ], "value" : "c", "tstamp" : "2019-07-18T02:56:09.386469Z" },
          { "name" : "setcolumn", "deletion_info" : { "marked_deleted" : "2019-07-18T02:55:03.280578Z", "local_delete_time" : "2019-07-18T02:55:03Z" } },
          { "name" : "setcolumn", "path" : [ "a" ], "deletion_info" : { "local_delete_time" : "2019-07-18T10:03:17Z" },
            "tstamp" : "2019-07-18T10:03:17.038519Z"
          },
          { "name" : "setcolumn", "path" : [ "b" ], "value" : "", "tstamp" : "2019-07-18T02:55:03.280579Z" },
          { "name" : "setcolumn", "path" : [ "c" ], "value" : "", "tstamp" : "2019-07-18T02:55:03.280579Z" }
        ]
      }
    ]
  }

试试删除setcolumn整列

update user set setcolumn = null where id =1;

刷sst,执行nodetool compact, 使用dump工具查看,setcolumn之前的子元素全部消失了。

tools/bin/sstabledump  /data/data2/ks/user-a92ce790a8ff11e99a3d8963a5d3f9b4/md-27-big-Data.db
[
  {
    "partition" : {
      "key" : [ "1" ],
      "position" : 0
    },
    "rows" : [
      {
        "type" : "row",
        "position" : 210,
        "liveness_info" : { "tstamp" : "2019-07-18T02:43:36.011497Z" },
        "cells" : [
          { "name" : "addr", "deletion_info" : { "marked_deleted" : "2019-07-18T02:43:36.011496Z", "local_delete_time" : "2019-07-18T02:43:36Z" } },
          { "name" : "addr", "path" : [ "bj" ], "value" : ["ba", "bb"] },
          { "name" : "addr", "path" : [ "shanghai" ], "value" : ["sa", "sb"] },
          { "name" : "complex", "deletion_info" : { "marked_deleted" : "2019-07-18T02:47:55.888562Z", "local_delete_time" : "2019-07-18T02:47:55Z" } },
          { "name" : "complex", "path" : [ "bj" ], "value" : {"ka": "va", "kb": "vb"}, "tstamp" : "2019-07-18T02:47:55.888563Z" },
          { "name" : "listcolumn", "deletion_info" : { "marked_deleted" : "2019-07-18T02:56:09.386468Z", "local_delete_time" : "2019-07-18T02:56:09Z" } },
          { "name" : "listcolumn", "path" : [ "982493f0-a907-11e9-9a3d-8963a5d3f9b4" ], "value" : "a", "tstamp" : "2019-07-18T02:56:09.386469Z" },
          { "name" : "listcolumn", "path" : [ "982493f1-a907-11e9-9a3d-8963a5d3f9b4" ], "value" : "b", "tstamp" : "2019-07-18T02:56:09.386469Z" },
          { "name" : "listcolumn", "path" : [ "982493f2-a907-11e9-9a3d-8963a5d3f9b4" ], "value" : "c", "tstamp" : "2019-07-18T02:56:09.386469Z" },
          { "name" : "setcolumn", "deletion_info" : { "marked_deleted" : "2019-07-18T10:11:06.966534Z", "local_delete_time" : "2019-07-18T10:11:06Z" } }
        ]
      }
    ]
  }

总结

cassandra 宽表模型是将列打平存储成一个个cell,对于集合类型,相当于把cell再打平成path存储,整个表格相当于是一个双层结构。同时集合cell有自己的deleteTime,下层的path也有自己的deleteTime, ts等。

钉钉群交流

为了营造一个开放的 Cassandra 技术交流,我们建立了微信群和钉钉群,为广大用户提供专业的技术分享及问答,定期在国内开展线下技术沙龙,专家技术直播,欢迎大家加入。
image

钉钉群入群链接:https://c.tb.cn/F3.ZRTY0o

相关文章
|
8月前
|
存储 SQL 关系型数据库
关系型数据库数据结构化存储
【5月更文挑战第8天】关系型数据库数据结构化存储
108 6
|
7月前
|
存储 JSON NoSQL
深入解析Elasticsearch的内部数据结构和机制:行存储、列存储与倒排索引之行存(一)
深入解析Elasticsearch的内部数据结构和机制:行存储、列存储与倒排索引之行存(一)
|
7月前
|
存储 自然语言处理 NoSQL
深入解析Elasticsearch的内部数据结构和机制:行存储、列存储与倒排索引之列存(二)
深入解析Elasticsearch的内部数据结构和机制:行存储、列存储与倒排索引之列存(二)
|
8月前
|
存储 NoSQL 数据库
请解释一下键值存储数据库的工作原理,并提供一个使用键值存储数据库的实际应用场景。
请解释一下键值存储数据库的工作原理,并提供一个使用键值存储数据库的实际应用场景。
191 0
|
8月前
|
存储 NoSQL Redis
redis的五大数据类型底层数据结构
redis的五大数据类型底层数据结构
76 0
|
存储
数据存储类型
数据存储类型
229 0
|
存储 缓存 NoSQL
Mongodb存储特性与内部原理(上)
Mongodb存储特性与内部原理(上)
304 0
Mongodb存储特性与内部原理(上)
|
存储 NoSQL Linux
Mongodb存储特性与内部原理(下)
Mongodb存储特性与内部原理(下)
266 0
Mongodb存储特性与内部原理(下)
|
存储 监控 OLAP
【ClickHouse 技术系列】- ClickHouse 中的嵌套数据结构
本文翻译自 Altinity 针对 ClickHouse 的系列技术文章。面向联机分析处理(OLAP)的开源分析引擎 ClickHouse,因其优良的查询性能,PB级的数据规模,简单的架构,被国内外公司广泛采用。本系列技术文章,将详细展开介绍 ClickHouse。
【ClickHouse 技术系列】- ClickHouse 中的嵌套数据结构