DLA新函数发布:事件路径分析-阿里云开发者社区

开发者社区> 数据湖分析Data Lake Analytics> 正文

DLA新函数发布:事件路径分析

简介: 概述 业务系统常常会产生大量的事件日志和数据,记录各种事件发生的相关信息,一条事件日志或者数据通常包含如事件ID,事件名称,时间点等。针对该类事件日志或者数据,DLA新提供了事件路径分析的聚合函数,主要支持按照事件时间点、时间戳得到事件顺序发生的时间序列,某类或者多类、某个或者多个事件发生的时间间隔序列等等。

概述

业务系统常常会产生大量的事件日志和数据,记录各种事件发生的相关信息,一条事件日志或者数据通常包含如事件ID,事件名称,时间点等。针对该类事件日志或者数据,DLA新提供了事件路径分析的聚合函数,主要支持按照事件时间点、时间戳得到事件顺序发生的时间序列,某类或者多类、某个或者多个事件发生的时间间隔序列等等。

数据模型

以下举例说明这类事件数据的数据模型,后面函数示例也以该示例数据为例。数据包含
user_id,event_time,event_id,event_name,event_attr,event_date等6个字段,本例中每个字段间用|分隔,该类数据或者日志可以存储在多种数据源中,比如对象存储、数据库、KV等(可以访问:https://zhuanlan.zhihu.com/data-lake-analytics , 查看更多DLA的云上数据能力、场景和使用方法介绍)。

4490015|1483266703322|10002|登陆|{}|2017-01-01
4490015|1483220795802|10005|收藏商品|{}|2017-01-01
4490022|1483233554546|10004|浏览商品|{"brand": "Apple", "price": 3500}|2017-01-01
4490022|1483279486394|10002|登陆|{}|2017-01-01
4490022|1483220124362|10002|登陆|{}|2017-01-01
4490022|1483233099062|10002|登陆|{}|2017-01-01
4490022|1483267998231|10010|退订商品|{}|2017-01-01
4490029|1483222204303|10007|生成订单|{"price_all": 4500}|2017-01-01
4490029|1483240004108|10004|浏览商品|{"brand": "LianX", "price": 7500}|2017-01-01
4490029|1483254745351|10006|加入购物车|{}|2017-01-01

本例,假设上面数据以sample.txt文本存储在阿里云对象存储OSS中,路径为:

oss://your_test_data_bucket/event_sample_data/sample.txt

则建schema、建表:

CREATE DATABASE `basic_test`
WITH DBPROPERTIES (
    catalog = 'oss',
    location = 'oss://your_test_data_bucket/'
)
COMMENT '';


CREATE EXTERNAL TABLE IF NOT EXISTS `basic_test`.`event_test` (
    `user_id` bigint COMMENT '',
    `event_time` bigint COMMENT '',
    `event_id` int COMMENT '',
    `event_name` varchar COMMENT '',
    `event_attr` varchar COMMENT '',
    `event_date` date COMMENT ''
)
ROW FORMAT DELIMITED
    FIELDS TERMINATED BY '\t'
STORED AS `TEXTFILE`
LOCATION 'oss://your_test_data_bucket/event_sample_data/'
TBLPROPERTIES (
    'auto.create.location' = 'true'
);

函数说明

1. event_sequence

说明:输出事件发生的时间点序列数组。

event_sequence(
  boolean desc,     -- 是否按照时间从大到小排列(可选,默认false,按照从小到大)
  bigint limit,     -- 输出的时间点序列数组的大小(可选,默认100,最大1000)
  bigint timeInMS   -- 事件发生的时间点、时间戳(必选,时间戳的long型,到毫秒)
)--> array[bigint] 

例如:

SELECT event_name, event_sequence(event_time) AS a 
FROM `basic_test`.`event_test`
GROUP BY 1 
ORDER BY 1;

-->

+-----------------+--------------------------------------------------------------+
| event_name      | a                                                            |
+-----------------+--------------------------------------------------------------+
| 加入购物车      | [1483254745351]                                              |
| 收藏商品        | [1483220795802]                                              |
| 浏览商品        | [1483233554546, 1483240004108]                               |
| 生成订单        | [1483222204303]                                              |
| 登陆            | [1483220124362, 1483233099062, 1483266703322, 1483279486394] |
| 退订商品        | [1483267998231]                                              |
+-----------------+--------------------------------------------------------------+


SELECT event_name, event_sequence(true, 3, event_time) AS a 
FROM `basic_test`.`event_test`
GROUP BY 1 
ORDER BY 1;

-->

+-----------------+-----------------------------------------------+
| event_name      | a                                             |
+-----------------+-----------------------------------------------+
| 加入购物车      | [1483254745351]                               |
| 收藏商品        | [1483220795802]                               |
| 浏览商品        | [1483240004108, 1483233554546]                |
| 生成订单        | [1483222204303]                               |
| 登陆            | [1483279486394, 1483266703322, 1483233099062] |
| 退订商品        | [1483267998231]                               |
+-----------------+-----------------------------------------------+

2. event_interval

说明:输出事件发生的时间点间隔序列数组。如果事件只发生一次,则无间隔值,对应数组输出空。

event_interval(
  boolean desc,         -- 是否按照时间从大到小排列(可选,默认false,按照从小到大)
  bigint limit,         -- 输出的时间点间隔序列数组的大小(可选,默认100,最大1000)
  bigint timeInMS,      -- 事件发生的时间点、时间戳(必选,时间戳的long型,到毫秒)
  varchar timeZoneKey,  -- 指定的时区名称(可选,默认为系统(DLA服务所在region)当前时区)
  varchar timeUnit      -- 要显示的时间点间隔的时间度量单位(*)
)--> array[bigint]
  
  
* 其中,时间度量单位目前支持:
 YEAR, QUARTER, MONTH, WEEK, DAY, HOUR, MINUTE, SECOND, MILLISECOND

例如:

SELECT event_name,
       event_interval(event_time, 'second') as a
FROM `basic_test`.`event_test`
GROUP BY 1
ORDER BY 1;

-->

+-----------------+-----------------------+
| event_name      | a                     |
+-----------------+-----------------------+
| 加入购物车      | []                    |
| 收藏商品        | []                    |
| 浏览商品        | [6449]                |
| 生成订单        | []                    |
| 登陆            | [12974, 33604, 12783] |
| 退订商品        | []                    |
+-----------------+-----------------------+



SELECT event_name,
       event_interval(true, 3, event_time, current_timezone(), 'millisecond') as a
FROM `basic_test`.`event_test`
GROUP BY 1
ORDER BY 1;

-->

+-----------------+-----------------------------------+
| event_name      | a                                 |
+-----------------+-----------------------------------+
| 加入购物车      | []                                |
| 收藏商品        | []                                |
| 浏览商品        | [-6449562]                        |
| 生成订单        | []                                |
| 登陆            | [-12783072, -33604260, -12974700] |
| 退订商品        | []                                |
+-----------------+-----------------------------------+



SELECT event_name,
       event_interval(event_time, 'UTC', 'day') as a
FROM `basic_test`.`event_test`
GROUP BY 1
ORDER BY 1;

-->

+-----------------+-----------+
| event_name      | a         |
+-----------------+-----------+
| 加入购物车      | []        |
| 收藏商品        | []        |
| 浏览商品        | [0]       |
| 生成订单        | []        |
| 登陆            | [0, 0, 0] |
| 退订商品        | []        |
+-----------------+-----------+

Data Lake Analytics首购和流量包优惠

首购用户1元10TB,流量包阶梯折扣优惠:https://et.aliyun.com/bdad/datalake
产品详情:https://www.aliyun.com/product/datalakeanalytics
云栖社区:https://yq.aliyun.com/teams/396
知乎社区:https://zhuanlan.zhihu.com/data-lake-analytics

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
数据湖分析Data Lake Analytics
使用钉钉扫一扫加入圈子
+ 订阅

数据湖分析Data Lake Analytics是阿里云数据库自研的核心产品,是新一代CloudNative分析平台;开放计算,支持MySQL协议,支持Presto、Spark引擎;主打低成本、Serverless无托管成本;统一元数据、可以让用户拥有统一的数据视图。目前在阿里云服务数千客户。

官方博客
官网链接