Apache Flink 零基础入门(八): SQL 编程实践

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 本文是 Apache Flink 零基础入门系列文章第八篇,将通过五个实例讲解 Flink SQL 的编程实践。

作者:伍翀(云邪)

本文是 Apache Flink 零基础入门系列文章第八篇,将通过五个实例讲解 Flink SQL 的编程实践。

注: 本教程实践基于 Ververica 开源的 sql-training 项目。基于 Flink 1.7.2 。

通过本课你能学到什么?

本文将通过五个实例来贯穿 Flink SQL 的编程实践,主要会涵盖以下几个方面的内容。

  1. 如何使用 SQL CLI 客户端
  2. 如何在流上运行 SQL 查询
  3. 运行 window aggregate 与 non-window aggregate,理解其区别
  4. 如何用 SQL 消费 Kafka 数据
  5. 如何用 SQL 将结果写入 Kafka 和 ElasticSearch

本文假定您已具备基础的 SQL 知识。

环境准备

本文教程是基于 Docker 进行的,因此你只需要安装了 Docker 即可。不需要依赖 Java、Scala 环境、或是IDE。

注意:Docker 默认配置的资源可能不太够,会导致运行 Flink Job 时卡死。因此推荐配置 Docker 资源到 3-4 GB,3-4 CPUs。

本次教程的环境使用 Docker Compose 来安装,包含了所需的各种服务的容器,包括:

  • Flink SQL Client:用来提交query,以及可视化结果
  • Flink JobManager 和 TaskManager:用来运行 Flink SQL 任务。
  • Apache Kafka:用来生成输入流和写入结果流。
  • Apache Zookeeper:Kafka 的依赖项
  • ElasticSearch:用来写入结果

我们已经提供好了Docker Compose 配置文件,可以直接下载 docker-compose.yml 文件。

然后打开命令行窗口,进入存放 docker-compose.yml 文件的目录,然后运行以下命令:

  • Linux & MacOS
docker-compose up -d
  • Windows
set COMPOSE_CONVERT_WINDOWS_PATHS=1
docker-compose up -d

docker-compose 命令会启动所有所需的容器。第一次运行的时候,Docker 会自动地从 Docker Hub 下载镜像,这可能会需要一段时间(将近 2.3GB)。之后运行的话,几秒钟就能启动起来了。运行成功的话,会在命令行中看到以下输出,并且也可以在 http://localhost:8081 访问到 Flink Web UI。

运行 Flink SQL CLI 客户端

运行下面命令进入 Flink SQL CLI 。

docker-compose exec sql-client ./sql-client.sh

该命令会在容器中启动 Flink SQL CLI 客户端。然后你会看到如下的欢迎界面。

数据介绍

Docker Compose 中已经预先注册了一些表和数据,可以运行 SHOW TABLES; 来查看。本文会用到的数据是 Rides 表,这是一张出租车的行车记录数据流,包含了时间和位置信息,运行 DESCRIBE Rides; 可以查看表结构。

Flink SQL> DESCRIBE Rides;
root
 |-- rideId: Long           // 行为ID (包含两条记录,一条入一条出)
 |-- taxiId: Long           // 出租车ID 
 |-- isStart: Boolean       // 开始 or 结束
 |-- lon: Float             // 经度
 |-- lat: Float             // 纬度
 |-- rideTime: TimeIndicatorTypeInfo(rowtime)     // 时间
 |-- psgCnt: Integer        // 乘客数

Rides 表的详细定义见 training-config.yaml

实例1:过滤

例如我们现在只想查看发生在纽约的行车记录

注:Docker 环境中已经预定义了一些内置函数,如 isInNYC(lon, lat) 可以确定一个经纬度是否在纽约,toAreaId(lon, lat) 可以将经纬度转换成区块。

因此,此处我们可以使用 isInNYC 来快速过滤出纽约的行车记录。在 SQL CLI 中运行如下 Query:

SELECT * FROM Rides WHERE isInNYC(lon, lat);

SQL CLI 便会提交一个 SQL 任务到 Docker 集群中,从数据源(Rides 流存储在Kafka中)不断拉取数据,并通过 isInNYC 过滤出所需的数据。SQL CLI 也会进入可视化模式,并不断刷新展示过滤后的结果:

也可以到 http://localhost:8081 查看 Flink 作业的运行情况。

实例2:Group Aggregate

我们的另一个需求是计算搭载每种乘客数量的行车事件数。也就是搭载1个乘客的行车数、搭载2个乘客的行车... 当然,我们仍然只关心纽约的行车事件。

因此,我们可以按照乘客数psgCnt做分组,使用 COUNT(*) 计算出每个分组的事件数,注意在分组前需要先过滤出isInNYC的数据。在 SQL CLI 中运行如下 Query:

SELECT psgCnt, COUNT(*) AS cnt 
FROM Rides 
WHERE isInNYC(lon, lat)
GROUP BY psgCnt;

SQL CLI 的可视化结果如下所示,结果每秒都在发生变化。不过最大的乘客数不会超过 6 人。

实例3:Window Aggregate

为了持续地监测纽约的交通流量,需要计算出每个区块每5分钟的进入的车辆数。我们只关心至少有5辆车子进入的区块。

此处需要涉及到窗口计算(每5分钟),所以需要用到 Tumbling Window 的语法。“每个区块” 所以还要按照 toAreaId 进行分组计算。“进入的车辆数” 所以在分组前需要根据 isStart 字段过滤出进入的行车记录,并使用 COUNT(*) 统计车辆数。最后还有一个 “至少有5辆车子的区块” 的条件,这是一个基于统计值的过滤条件,所以可以用 SQL HAVING 子句来完成。

最后的 Query 如下所示:

SELECT 
  toAreaId(lon, lat) AS area, 
  TUMBLE_END(rideTime, INTERVAL '5' MINUTE) AS window_end, 
  COUNT(*) AS cnt 
FROM Rides 
WHERE isInNYC(lon, lat) and isStart
GROUP BY 
  toAreaId(lon, lat), 
  TUMBLE(rideTime, INTERVAL '5' MINUTE) 
HAVING COUNT(*) >= 5;

在 SQL CLI 中运行后,其可视化结果如下所示,每个 area + window_end 的结果输出后就不会再发生变化,但是会每隔 5 分钟会输出一批新窗口的结果。因为 Docker 环境中的source我们做了10倍的加速读取(相对于原始速度),所以演示的时候,大概每隔30秒就会输出一批新窗口。

Window Aggregate 与 Group Aggregate 的区别

从实例2和实例3的结果显示上,可以体验出来 Window Aggregate 与 Group Aggregate 是有一些明显的区别的。其主要的区别是,Window Aggregate 是当window结束时才输出,其输出的结果是最终值,不会再进行修改,其输出流是一个 Append 流。而 Group Aggregate 是每处理一条数据,就输出最新的结果,其结果是在不断更新的,就好像数据库中的数据一样,其输出流是一个 Update 流

另外一个区别是,window 由于有 watermark ,可以精确知道哪些窗口已经过期了,所以可以及时清理过期状态,保证状态维持在稳定的大小。而 Group Aggregate 因为不知道哪些数据是过期的,所以状态会无限增长,这对于生产作业来说不是很稳定,所以建议对 Group Aggregate 的作业配上 State TTL 的配置。

例如统计每个店铺每天的实时PV,那么就可以将 TTL 配置成 24+ 小时,因为一天前的状态一般来说就用不到了。

SELECT  DATE_FORMAT(ts, 'yyyy-MM-dd'), shop_id, COUNT(*) as pv
FROM T
GROUP BY DATE_FORMAT(ts, 'yyyy-MM-dd'), shop_id

当然,如果 TTL 配置地太小,可能会清除掉一些有用的状态和数据,从而导致数据精确性地问题。这也是用户需要权衡地一个参数。

实例4:将 Append 流写入 Kafka

上一小节介绍了 Window Aggregate 和 Group Aggregate 的区别,以及 Append 流和 Update 流的区别。在 Flink 中,目前 Update 流只能写入支持更新的外部存储,如 MySQL, HBase, ElasticSearch。Append 流可以写入任意地存储,不过一般写入日志类型的系统,如 Kafka。

这里我们希望将“每10分钟的搭乘的乘客数”写入Kafka。

我们已经预定义了一张 Kafka 的结果表 Sink_TenMinPsgCntstraining-config.yaml 中有完整的表定义)。

在执行 Query 前,我们先运行如下命令,来监控写入到 TenMinPsgCnts topic 中的数据:

docker-compose exec sql-client /opt/kafka-client/bin/kafka-console-consumer.sh --bootstrap-server kafka:9092 --topic TenMinPsgCnts --from-beginning

每10分钟的搭乘的乘客数可以使用 Tumbling Window 来描述,我们使用 INSERT INTO Sink_TenMinPsgCnts 来直接将 Query 结果写入到结果表。

INSERT INTO Sink_TenMinPsgCnts 
SELECT 
  TUMBLE_START(rideTime, INTERVAL '10' MINUTE) AS cntStart,  
  TUMBLE_END(rideTime, INTERVAL '10' MINUTE) AS cntEnd,
  CAST(SUM(psgCnt) AS BIGINT) AS cnt 
FROM Rides 
GROUP BY TUMBLE(rideTime, INTERVAL '10' MINUTE);

我们可以监控到 TenMinPsgCnts topic 的数据以 JSON 的形式写入到了 Kafka 中:

实例5:将 Update 流写入 ElasticSearch

最后我们实践一下将一个持续更新的 Update 流写入 ElasticSearch 中。我们希望将“每个区域出发的行车数”,写入到 ES 中。

我们也已经预定义好了一张 Sink_AreaCnts 的 ElasticSearch 结果表(training-config.yaml 中有完整的表定义)。该表中只有两个字段 areaIdcnt

同样的,我们也使用 INSERT INTO 将 Query 结果直接写入到 Sink_AreaCnts 表中。

INSERT INTO Sink_AreaCnts 
SELECT toAreaId(lon, lat) AS areaId, COUNT(*) AS cnt 
FROM Rides 
WHERE isStart
GROUP BY toAreaId(lon, lat);

在 SQL CLI 中执行上述 Query 后,Elasticsearch 会自动地创建 area-cnts 索引。Elasticsearch 提供了一个 REST API 。我们可以访问

随着 Query 的一直运行,你也可以观察到一些统计值(_all.primaries.docs.count, _all.primaries.docs.deleted)在不断的增长:http://localhost:9200/area-cnts/_stats

总结

本文带大家使用 Docker Compose 快速上手 Flink SQL 的编程,并对比 Window Aggregate 和 Group Aggregate 的区别,以及这两种类型的作业如何写入到 外部系统中。感兴趣的同学,可以基于这个 Docker 环境更加深入地去实践,例如运行自己写的 UDF , UDTF, UDAF。查询内置地其他源表等等。


▼ Apache Flink 社区推荐 ▼

Apache Flink 及大数据领域顶级盛会 Flink Forward Asia 2019 重磅开启,目前正在征集议题,限量早鸟票优惠ing。了解 Flink Forward Asia 2019 的更多信息,请查看:

https://developer.aliyun.com/special/ffa2019

首届 Apache Flink 极客挑战赛重磅开启,聚焦机器学习与性能优化两大热门领域,40万奖金等你拿,加入挑战请点击:

https://tianchi.aliyun.com/markets/tianchi/flink2019

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
761 13
Apache Flink 2.0-preview released
|
2月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
82 3
|
3月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。
|
3月前
|
SQL 存储 API
Flink实践:通过Flink SQL进行SFTP文件的读写操作
虽然 Apache Flink 与 SFTP 之间的直接交互存在一定的限制,但通过一些创造性的方法和技术,我们仍然可以有效地实现对 SFTP 文件的读写操作。这既展现了 Flink 在处理复杂数据场景中的强大能力,也体现了软件工程中常见的问题解决思路——即通过现有工具和一定的间接方法来克服技术障碍。通过这种方式,Flink SQL 成为了处理各种数据源,包括 SFTP 文件,在内的强大工具。
184 15
|
3月前
|
消息中间件 资源调度 API
Apache Flink 流批融合技术介绍
本文源自阿里云高级研发工程师周云峰在Apache Asia Community OverCode 2024的分享,内容涵盖从“流批一体”到“流批融合”的演进、技术解决方案及社区进展。流批一体已在API、算子和引擎层面实现统一,但用户仍需手动配置作业模式。流批融合旨在通过动态调整优化策略,自动适应不同场景需求。文章详细介绍了如何通过量化指标(如isProcessingBacklog和isInsertOnly)实现这一目标,并展示了针对不同场景的具体优化措施。此外,还概述了社区当前进展及未来规划,包括将优化方案推向Flink社区、动态调整算子流程结构等。
420 31
Apache Flink 流批融合技术介绍
|
1月前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
2月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
67 1
|
2月前
|
数据挖掘 物联网 数据处理
深入探讨Apache Flink:实时数据流处理的强大框架
在数据驱动时代,企业需高效处理实时数据流。Apache Flink作为开源流处理框架,以其高性能和灵活性成为首选平台。本文详细介绍Flink的核心特性和应用场景,包括实时流处理、强大的状态管理、灵活的窗口机制及批处理兼容性。无论在实时数据分析、金融服务、物联网还是广告技术领域,Flink均展现出巨大潜力,是企业实时数据处理的理想选择。随着大数据需求增长,Flink将继续在数据处理领域发挥重要作用。
116 0
|
2月前
|
SQL 大数据 API
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
49 0
|
2月前
|
消息中间件 druid Kafka
从Apache Flink到Kafka再到Druid的实时数据传输,用于分析/决策
从Apache Flink到Kafka再到Druid的实时数据传输,用于分析/决策
82 0

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多