数据治理——企业数字化转型的基石

本文涉及的产品
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 在数据资产价值被高度认可和开发利用的今天,数据治理不仅仅需要作为一项管理职能在企业内贯彻执行,也应该成为一种企业文化。

1 为什么要进行数据治理?

首先,数据是有价值的。根据埃森哲发布的“2035年之前各行业的平均GDP增长率”,单纯看自然增长,制造行业只有2.1%,但是通过数据以及由此衍生出来的人工智能加成之后,这个数字就晋升到第二名4.4%,数据的价值是相当可观的。

但是,数据的应用环境是有风险的。Facebook的个人隐私泄露事件,直接导致Facebook市值缩水640亿美元,扎克伯格也受到国会质询。

此外,数据的应用环境是低效的。为什么数据的应用环境是低效的?一是数据不可知,用户不知道自己有哪些数据,也不知道这些数据和业务有什么关系,虽然意识到了大数据的重要性,但是没有能解决自己业务所面临问题的关键数据或不知该如何寻找这些数据。二是数据不可用,数据需要一个漫长的开发过程,导致业务分析的需求,难以被快速满足。三是数据不可控,没有统一的数据标准导致数据难以集成统一,没有质量控制导致海量数据难以被利用,没有有效管理整个大数据平台的管理流程。

从上面三点的分析,就得出了我们数据治理的一个目标就是:合规、高效地产生数据价值。建立数据拥有者、使用者、数据以及支撑系统之间的和谐互补关系, 从全机构视角协调、统领各个层面的数据管理工作, 确保内部各类人员能够得到及时、准确的数据支持和服务。

2 如何合规、高效地产生数据价值?

我们认为要合规、高效地产生数据价值一定不仅仅是技术层面的事情,而是需要构建全生命周期、全深度、全方位的治理体系,包括数据治理组织体系、数据治理工具、数据治理管控流程三大层面。

通过数据治理组织建立管理办法、制定工作流程、确定角色职责。数据治理工具主要包括数据标准管理、元数据管理、数据质量管理、数据资产管理、数据安全管理,各模块协调运营,确保数据平台的数据一致、安全、有效。数据治理管控流程贯穿整个数据治理体系的流程中,实现平台化的数据管理思路。

3 数据治理组织体系

数据治理组织的构建旨在通过建立数据治理组织架构,明确各级角色和职责,保障数据治理的各项管理办法、工作流程的实施,推动数据治理工作的有序开展。

_

整个数据治理的组织结构可以分为三层:

1.数据治理委员会:数据管理的决策者。负责牵头数据治理工作,制定数据治理的政策、标准、规则、流程,协调认责冲突。

2.数据治理中心:数据平台的运营者。负责提交数据标准的要求及数据质量规则和业务规范,监督各项数据规则和规范约束的落地情况,并负责数据治理中整体数据的管控流程制定。

3.各业务部门:数据提供者、数据维护者、数据消费者。负责具体执行事项。

4 数据治理管控流程

_2

数据治理管控流程是为了让方案能真正有序的落地,以数据标准制定为例:

数据标准管理协调者组织数据提供者和执行者参与数据标准属性的收集和整理工作,并按照企业实际情况协商出数据标准初稿。

数据标准初稿进行多次的讨论和丰富后,形成数据标准审核稿提交至数据标准管理决策者。

经过数据标准管理决策者的讨论审核后,由数据标准管理协调者再次进行数据标准的修改完善,并完成数据标准的发布。

5 数据治理管控工具

工欲善其事,必先利其器。数据治理管控工具是为了帮助企业更好地将规范执行落地。通常认为, 数据治理至少应当涵盖如下功能域:数据资产管理、数据标准管理、元数据管理、数据质量管理、数据运维管理以及数据生命周期管理等。

3

• 数据标准:在数据治理组织架构推动和指导下,遵循协商一致制定的数据标准规范,借助标准化管控流程得以实施数据标准化的整个过程。

• 元数据:采用集中式管理模式进行元数据管理,企业元数据逻辑集中,即元数据管理模块作为公司元数据的统一发布源,集中管理元数据,提供元数据集中创建、维护、查询功能。

• 数据质量:对数据从计划、获取、存储、共享、维护、应用、消亡等生命周期的每个阶段可能引发的各类数据质量问题,进行识别、度量、监控、预警等一系列管理活动,并通过改善和提高组织的管理水平使得数据质量获得进一步提高。

• 数据资产:规划、控制、提供数据及数据资产的一组业务职能,包括开发、执行和监督有关数据的计划、政策、方案、项目、流程、方法和程序,从而控制、保护、提高数据资产的价值。

• 数据安全:通过计划、制定、执行数据安全政策和安全策略措施,为企业数据提供行之有效的认证、授权、访问和审计。

• 数据运维:包括数据资产运维、数据质量运维,可借助运维工具来整体提升企业数据运维效率。

6 结语

在数据资产价值被高度认可和开发利用的今天,数据治理不仅仅需要作为一项管理职能在企业内贯彻执行,也应该成为一种企业文化。企业各层级的数据管理人员必须不断地沟通、教育和推广数据资产价值的重要性以及数据治理职能的业务贡献。提升数据使用者对数据治理的意识及对数据治理效益的认可程度,是以持续改进企业数据管理机制,充分挖掘企业数据价值,提升企业核心竞争力。

相关实践学习
MySQL基础-学生管理系统数据库设计
本场景介绍如何使用DMS工具连接RDS,并使用DMS图形化工具创建数据库表。
目录
相关文章
|
6月前
|
运维 Cloud Native 云计算
云原生技术在企业数字化转型中的关键作用
当今社会,随着信息技术的飞速发展,云原生技术作为一种新兴的技术范式,正在逐渐成为企业数字化转型的关键支撑。本文将从云原生技术的定义、特点以及在企业数字化转型中的关键作用等方面进行探讨,旨在帮助读者更全面地了解云原生技术的重要性。
|
3月前
|
人工智能 监控 数据挖掘
数字化转型中的项目管理架构:创新与挑战
【8月更文第7天】简述数字化转型对企业的重要性及其对项目管理带来的影响。 - 概述数字化转型下项目管理架构所面临的机遇与挑战。
376 0
|
6月前
|
Cloud Native 持续交付 API
构建未来:云原生技术在企业数字化转型中的关键作用
【5月更文挑战第31天】 随着企业加速其数字化转型的步伐,云原生技术已成为推动创新和实现业务敏捷性的核心动力。本文深入探讨了云原生技术如何优化资源利用、提高服务可靠性,并促进持续集成与持续交付(CI/CD),最终帮助企业快速响应市场变化。我们将剖析云原生架构的基本原理,包括容器化、微服务、以及声明式API等关键技术,同时展示它们如何共同作用,为企业提供一个灵活、可扩展且高度自动化的运行环境。文章还将提供实际案例分析,以证明采用云原生技术的企业如何有效提升运营效率并取得竞争优势。
|
6月前
|
Cloud Native 持续交付 API
构筑未来:云原生技术在企业数字化转型中的关键作用
【5月更文挑战第29天】 随着企业加速迈向数字化时代,云原生技术已站在风口浪尖,成为支撑企业敏捷性、可扩展性和创新能力的基石。本文深入探讨了云原生架构的核心组件,包括容器化、微服务、持续集成/持续部署(CI/CD)、以及声明式API等,并分析了它们如何共同塑造出一个灵活、高效的企业IT环境。通过具体案例分析,文章强调了云原生技术对于企业快速响应市场变化、提升运营效率及促进技术创新的重要性。
|
6月前
|
运维 Cloud Native 持续交付
构筑未来:云原生技术在企业数字化转型中的核心作用
随着企业加速其数字化进程,云原生技术已站在风口浪尖,成为推动创新、提升业务敏捷性和优化资源利用效率的关键驱动力。本文深入探讨了云原生架构的基本原理及其为企业带来的转型潜力,分析了容器化、微服务、持续集成与持续部署(CI/CD)等关键技术的实践应用,并展望了云原生技术在未来企业IT战略中的定位和发展方向。
47 3
|
6月前
|
供应链 Cloud Native 数据管理
云计算在企业数字化转型中的关键作用及最佳实践
云计算重塑企业数字化转型,提供弹性、可扩展的计算平台,降低成本,提升运营效率和客户体验。其优势包括成本效益、灵活性、高可用性及创新加速。企业应制定云计算战略,开发云原生应用,采用混合云架构,并注重数据安全与合规。案例中,一制造企业通过云计算实现全球业务统一,简化供应链,加速产品创新,优化生产并保障数据安全。
|
数据采集 存储 分布式计算
一篇文章搞懂数据仓库:数据治理(目的、方法、流程)
一篇文章搞懂数据仓库:数据治理(目的、方法、流程)
20793 2
一篇文章搞懂数据仓库:数据治理(目的、方法、流程)
|
存储 数据采集 人工智能
谈谈企业数字化转型、数字化能力与数据治理的关系
全球正在由工业经济向数字经济转型过渡,制造业正在并将长期处于数字化转型发展的历史阶段,沿着数字化、网络化、智能化阶段不断跃升。
谈谈企业数字化转型、数字化能力与数据治理的关系
|
数据采集 供应链 数据管理
从数据治理到数据应用,制造业企业如何突破数字化转型困境丨行业方案
我国制造业拥有 31 个大类、179 个中类和 609 个小类,是全球产业门类最齐全、产业体系最完整的制造业。作为世界工厂,中国制造业在拉动本国经济增长、促进本国就业等方面贡献卓越,更是我国民生消费的底层基础。同时,中国从原来的原料出口国,逐步转为工业品中间品、中间品等普通技术密集型产品的国家,为其他国家消费品的满足提供坚实支撑。 随着数字化浪潮汹涌而至,制造业紧随金融、信息通讯行业,正加速进入数字化转型的深水区。
289 0
|
机器学习/深度学习 人工智能 Oracle
2018盘点之数据治理——企业数字化转型的基础
2018盘点之数据治理——企业数字化转型的基础
215 0
2018盘点之数据治理——企业数字化转型的基础
下一篇
无影云桌面