阿里行人重识别(ReID)算法效果取得世界第一

简介: 阿里巴巴机器智能技术实验室在行人重识别(Person Re-identification)算法上获得突破性成果。

image.png

近日,阿里巴巴机器智能技术实验室在行人重识别(Person Re-identification)算法上获得突破性成果。该技术团队通过最新算法,在不使用任何时序信息的情况下,在行人重识别主流数据库(Market1501,DukeMTMC-reid和CUHK03)上各项指标均取得第一的好成绩,刷新了业内的最好成绩。

image.png

其性能的提高主要来源于技术层面的创新:该团队通过局部信息的挖掘,致力于解决行人在识别过程中表观姿态变化剧烈,不容易对齐的问题。一方面,通过人体语义分割得到具有强语义信息的部件,并利用注意力机制在其中寻找最具有区分性的区域。另一方面,使用了基于金字塔的水平分块策略,得到行人固定区域的可辨识信息。在训练中,同时采用两种策略相结合的方式,达到行人图片的对齐,从而实现更精准的匹配识别。通过技术上的改进,该方法在三个公开数据库上的效果均优于之前最好方法,特别是mAP指标,分别提升了2%,1.87%,3.39%。

image.png

近年来,行人重识别技术在业内得到了越来越多的关注,仅CVPR2018就有将近30多篇文章专注于行人重识别问题的研究。随着行人重识别技术的日渐成熟,其巨大的应用价值和市场潜力得到了越来越多的关注。

不管是老牌的安防公司如海康威视,浙江大华,还是新晋独角兽旷世科技,商汤科技,还有传统的互联网巨头,BAT,华为等,都对行人重识别非常关注,在算法,数据和人才等各个方面上进行着布局和积累。此次阿里巴巴机器智能技术实验室在行人重识别算法的突破,为其在新零售领域相关技术方案落地奠定了稳固基础。

目录
相关文章
|
6月前
|
算法
【MATLAB】语音信号识别与处理:移动中位数滤波算法去噪及谱相减算法呈现频谱
【MATLAB】语音信号识别与处理:移动中位数滤波算法去噪及谱相减算法呈现频谱
89 2
|
6月前
|
算法
【MATLAB】语音信号识别与处理:一维信号NLM非局部均值滤波算法去噪及谱相减算法呈现频谱
【MATLAB】语音信号识别与处理:一维信号NLM非局部均值滤波算法去噪及谱相减算法呈现频谱
139 1
|
5月前
|
机器学习/深度学习 存储 算法
使用支持向量机算法解决手写体识别问题
使用支持向量机算法解决手写体识别问题
33 2
|
4月前
|
机器学习/深度学习 人工智能 算法
【坚果识别】果实识别+图像识别系统+Python+计算机课设+人工智能课设+卷积算法
坚果识别系统,使用Python语言进行开发,通过TensorFlow搭建卷积神经网络算法模型,对10种坚果果实('杏仁', '巴西坚果', '腰果', '椰子', '榛子', '夏威夷果', '山核桃', '松子', '开心果', '核桃')等图片数据集进行训练,得到一个识别精度较高的模型文件,让后使用Django搭建Web网页端界面操作平台,实现用户上传一张坚果图片 识别其名称。
52 0
|
5月前
|
机器学习/深度学习 算法 数据可视化
基于googlenet深度学习网络的睁眼闭眼识别算法matlab仿真
**算法预览图展示睁眼闭眼识别效果;使用Matlab2022a,基于GoogLeNet的CNN模型,对图像进行分类预测并可视化。核心代码包括图像分类及随机样本显示。理论概述中,GoogLeNet以高效Inception模块实现眼部状态的深度学习识别,确保准确性与计算效率。附带三张相关图像。**
|
5月前
|
移动开发 算法 计算机视觉
技术笔记:openCV特征点识别与findHomography算法过滤
技术笔记:openCV特征点识别与findHomography算法过滤
98 0
|
6月前
|
机器学习/深度学习 算法
应用规则学习算法识别有毒的蘑菇
应用规则学习算法识别有毒的蘑菇
|
6月前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络的螺丝螺母识别算法matlab仿真
以下是内容的摘要: 该文介绍了使用YOLOv2深度学习模型进行螺丝螺母识别的算法,展示了在matlab2022a环境下运行的6张检测效果图。YOLOv2基于Darknet-19预训练网络,结合多任务损失函数和非极大值抑制技术,有效检测目标。为了适应任务,进行了数据集准备、模型微调、锚框选取等步骤。核心程序加载预训练模型,遍历图像并展示检测结果,通过调整阈值绘制检测框。
|
6月前
|
算法
【MATLAB】语音信号识别与处理:小波去噪滤波算法去噪及谱相减算法呈现频谱
【MATLAB】语音信号识别与处理:小波去噪滤波算法去噪及谱相减算法呈现频谱
128 1
|
6月前
|
机器学习/深度学习 算法 生物认证
基于深度学习的人员指纹身份识别算法matlab仿真
这是一个关于使用深度学习进行指纹识别的算法概述。在matlab2022a环境下,通过预处理指纹图像(灰度化、二值化等)并利用卷积神经网络(CNN)提取特征。CNN架构包含卷积、池化、归一化和全连接层。特征向量通过余弦相似度计算匹配,训练时采用triplet loss优化。部分核心代码展示了加载预训练模型进行测试集分类预测并计算准确率的过程。