如何实施异构服务器的负载均衡及过载保护?

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 能否根据异构服务器的处理能力来动态、自适应进行负载均衡及过载保护,是本文要讨论的问题。

零、需求缘起

第一篇文章“一分钟了解负载均衡”和大家share了互联网架构中反向代理层、站点层、服务层、数据层的常用负载均衡方法。

第二篇文章“lvs为何不能完全代替DNS轮询”和大家share了互联网接入层负载均衡需要解决的问题及架构演进。

在这两篇文章中,都强调了“负载均衡是指,将请求/数据【均匀】分摊到多个操作单元上执行,负载均衡的关键在于【均匀】”。

然而,后端的service有可能部署在硬件条件不同的服务器上:

1)如果对标最低配的服务器“均匀”分摊负载,高配的服务器的利用率不足;

2)如果对标最高配的服务器“均匀”分摊负载,低配的服务器可能会扛不住;

能否根据异构服务器的处理能力来动态、自适应进行负载均衡及过载保护,是本文要讨论的问题。

一、service层的负载均衡通常是怎么做的

image.png

“一分钟了解负载均衡”中提到,service层的负载均衡,一般是通过service连接池来实现的,调用方连接池会建立与下游服务多个连接,每次请求“随机”获取连接,来保证service访问的均衡性。

“RPC-client实现细节”中提到,负载均衡、故障转移、超时处理等细节也都是通过调用方连接池来实现的。

这个调用方连接池能否实现,根据service的处理能力,动态+自适应的进行负载调度呢?

二、通过“静态权重”标识service的处理能力

image.png

调用方通过连接池组件访问下游service,通常采用“随机”的方式返回连接,以保证下游service访问的均衡性。

要打破这个随机性,最容易想到的方法,只要为每个下游service设置一个“权重”,代表service的处理能力,来调整访问到每个service的概率,例如:

假设service-ip1,service-ip2,service-ip3的处理能力相同,可以设置weight1=1,weight2=1,weight3=1,这样三个service连接被获取到的概率分别就是1/3,1/3,1/3,能够保证均衡访问。

假设service-ip1的处理能力是service-ip2,service-ip3的处理能力的2倍,可以设置weight1=2,weight2=1,weight3=1,这样三个service连接被获取到的概率分别就是2/4,1/4,1/4,能够保证处理能力强的service分别到等比的流量,不至于资源浪费。

使用nginx做反向代理与负载均衡,就有类似的机制。

这个方案的优点是:简单,能够快速的实现异构服务器的负载均衡。

缺点也很明显:这个权重是固定的,无法自适应动态调整,而很多时候,服务器的处理能力是很难用一个固定的数值量化。

三、通过“动态权重”标识service的处理能力

提问:通过什么来标识一个service的处理能力呢?

回答:其实一个service能不能处理得过来,能不能响应得过来,应该由调用方说了算。调用服务,快速处理了,处理能力跟得上;调用服务,处理超时了,处理能力很有可能跟不上了。

动态权重设计

1)用一个动态权重来标识每个service的处理能力,默认初始处理能力相同,即分配给每个service的概率相等;

2)每当service成功处理一个请求,认为service处理能力足够,权重动态+1

3)每当service超时处理一个请求,认为service处理能力可能要跟不上了,权重动态-10(权重下降会更快)

4)为了方便权重的处理,可以把权重的范围限定为[0, 100],把权重的初始值设为60分

举例说明:

假设service-ip1,service-ip2,service-ip3的动态权重初始值weight1=weight2=weight3=60,刚开始时,请求分配给这3台service的概率分别是60/180,60/180,60/180,即负载是均衡的。

随着时间的推移,处理能力强的service成功处理的请求越来越多,处理能力弱的service偶尔有超时,随着动态权重的增减,权重可能变化成了weight1=100,weight2=60,weight3=40,那么此时,请求分配给这3台service的概率分别是100/200,60/200,40/200,即处理能力强的service会被分配到更多的流量。

四、过载保护

提问:什么是过载保护?

image.png

图示:无过载保护的负载与处理能力图(会掉底)

回答:互联网软件架构设计中所指的过载保护,是指当系统负载超过一个service的处理能力时,如果service不进行自我保护,可能导致对外呈现处理能力为0,且不能自动恢复的现象。而service的过载保护,是指即使系统负载超过一个service的处理能力,service让能保证对外提供有损的稳定服务。

image.png

图示:有过载保护的负载与处理能力图(不会掉底)

提问:如何进行过载保护?

回答:最简易的方式,服务端设定一个负载阈值,超过这个阈值的请求压过来,全部抛弃。这个方式不是特别优雅。

五、如何借助“动态权重”来实施过载保护

动态权重是用来标识每个service的处理能力的一个值,它是RPC-client客户端连接池层面的一个东东。服务端处理超时,客户端RPC-client连接池都能够知道,这里只要实施一些策略,就能够对“疑似过载”的服务器进行降压,而不用服务器“抛弃请求”这么粗暴的实施过载保护。

应该实施一些什么样的策略呢,例如:

1)如果某一个service的连接上,连续3个请求都超时,即连续-10分三次,客户端就可以认为,服务器慢慢的要处理不过来了,得给这个service缓一小口气,于是设定策略:接下来的若干时间内,例如1秒(或者接下来的若干个请求),请求不再分配给这个service;

2)如果某一个service的动态权重,降为了0(像连续10个请求超时,中间休息了3次还超时),客户端就可以认为,服务器完全处理不过来了,得给这个service喘一大口气,于是设定策略:接下来的若干时间内,例如1分钟(为什么是1分钟,根据经验,此时service一般在发生fullGC,差不多1分钟能回过神来),请求不再分配给这个service;

3)可以有更复杂的保护策略…

这样的话,不但能借助“动态权重”来实施动态自适应的异构服务器负载均衡,还能在客户端层面更优雅的实施过载保护,在某个下游service快要响应不过来的时候,给其喘息的机会。

需要注意的是:要防止客户端的过载保护引起service的雪崩,如果“整体负载”已经超过了“service集群”的处理能力,怎么转移请求也是处理不过来的,还得通过抛弃请求来实施自我保护。

六、总结

1)service的负载均衡、故障转移、超时处理通常是RPC-client连接池层面来实施的

2)异构服务器负载均衡,最简单的方式是静态权重法,缺点是无法自适应动态调整

3)动态权重法,可以动态的根据service的处理能力来分配负载,需要有连接池层面的微小改动

4)过载保护,是在负载过高时,service为了保护自己,保证一定处理能力的一种自救方法

5)动态权重法,还可以用做service的过载保护

谢谢大伙,帮忙转发。

==【完】==

image.png

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
目录
相关文章
|
1月前
|
弹性计算 监控 负载均衡
|
6天前
|
弹性计算 负载均衡 网络协议
ECS中实现nginx4层7层负载均衡和ALB/NLB原SLB负载均衡
通过本文的介绍,希望您能深入理解并掌握如何在ECS中实现Nginx四层和七层负载均衡,以及如何使用ALB和NLB进行高效的负载均衡配置,以提高系统的性能和可靠性。
41 9
|
15天前
|
运维 监控 负载均衡
slb后端服务器故障
slb后端服务器故障
38 13
|
22天前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器架构有啥区别?X86计算、Arm、GPU异构、裸金属和高性能计算对比
阿里云ECS涵盖x86、ARM、GPU/FPGA/ASIC、弹性裸金属及高性能计算等多种架构。x86架构采用Intel/AMD处理器,适用于广泛企业级应用;ARM架构低功耗,适合容器与微服务;GPU/FPGA/ASIC专为AI、图形处理设计;弹性裸金属提供物理机性能;高性能计算则针对大规模并行计算优化。
|
23天前
|
弹性计算 负载均衡 安全
slb应用服务器对Host头有校验要求
slb应用服务器对Host头有校验要求
24 6
|
1月前
|
监控 负载均衡 算法
slb管理后端服务器
【10月更文挑战第18天】
35 5
|
2月前
|
存储 数据采集 分布式计算
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
56 1
|
4天前
|
弹性计算 运维 安全
阿里云轻量应用服务器与ECS的区别及选择指南
轻量应用服务器和云服务器ECS(Elastic Compute Service)是两款颇受欢迎的产品。本文将对这两者进行详细的对比,帮助用户更好地理解它们之间的区别,并根据自身需求做出明智的选择。
|
5天前
|
SQL 弹性计算 安全
阿里云上云优选与飞天加速计划活动区别及购买云服务器后续必做功课参考
对于很多用户来说,购买云服务器通常都是通过阿里云当下的各种活动来购买,这就有必要了解这些活动的区别,同时由于活动内的云服务器购买之后还需要单独购买并挂载数据盘,还需要设置远程密码以及安全组等操作之后才能正常使用云服务器。本文就为大家介绍一下目前比较热门的上云优选与飞天加速计划两个活动的区别,以及通过活动来购买云服务器之后的一些必做功课,确保云服务器可以正常使用,以供参考。
|
7天前
|
弹性计算 安全 开发工具
灵码评测-阿里云提供的ECS python3 sdk做安全组管理
批量变更阿里云ECS安全组策略(批量变更)
下一篇
DataWorks