这才是真正的表扩展方案

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 事情变得有意思了,上一篇花1小时撰写的“一分钟”文章,又引起了广泛的讨论,说明相关的技术大家感兴趣,挺好。第一次一篇技术文章的评论量过100,才知道原来“评论精选”还有100上限,甚为欣慰(虽然是以一种自己不愿看到的方式)。

事情变得有意思了,上一篇花1小时撰写的“一分钟”文章,又引起了广泛的讨论,说明相关的技术大家感兴趣,挺好。第一次一篇技术文章的评论量过100,才知道原来“评论精选”还有100上限,甚为欣慰(虽然是以一种自己不愿看到的方式)。

《啥,又要为表增加一列属性?》的方案颇有争议:

(1)版本号version + 扩展字段ext

(2)用增加列的key+value方式扩充属性

有些评论,只能说“所谓夏虫,何以语冰”(作者要谦和,请删除)。因自己时间仓促,有些地方没有交代清楚,对不起大伙,实在抱歉。大部分评论还是在进行技术讨论,故今天再熬夜补充说明一下。

零、缘起

讨论问题域:

(1)数据量大、并发量高场景,在线数据库属性扩展

(2)数据库表结构扩展性设计

一、哪些方案一定是不行的

(1)alter table add column

要坚持这个方案的,也不多解释了,大数据高并发情况下,一定不可行

(2)通过增加表的方式扩展,通过外键join来查询

大数据高并发情况下,join性能较差,一定不可行

(3)通过增加表的方式扩展,通过视图来对外

一定不可行。大数据高并发情况下,互联网不怎么使用视图,至少58禁止使用视图

(4)必须遵循“第x范式”的方案

一定不可行。互联网的主要矛盾之一是吞吐量,为了保证吞吐量甚至可能牺牲一些事务性和一致性,通过反范式的方式来确保吞吐量的设计是很常见的,例如:冗余数据。互联网的主要矛盾之二是可用性,为了保证可用性,常见的技术方案也是数据冗余。在互联网数据库架构设计中,第x范式真的没有这么重要

(5)打产品经理

朋友,这是段子么,这一定不可行

二、哪些方案可行,但文章未提及

(1)提前预留一些reserved字段

这个是可以的。但如果预留过多,会造成空间浪费,预留过少,不一定达得到扩展效果。

(2)通过增加表的方式扩展列,上游通过service来屏蔽底层的细节

这个也是可以的。Jeff同学提到的UserExt(uid, newCol1, newCol2)就是这样的方案(但join连表和视图是不行的)

三、哪些读者没有仔细看文章

(1)version+ext太弱了,ext不支持索引

回复:属于没有仔细看文章,文章也提了如果有强需求索引可以使用MongoDB,它就是使用的json存储(评论中有不少朋友提到,还有其他数据库支持json检索)

(2)第二种key+value方案不支持索引

回复:uid可以索引

四、key+value方式使用场景

服务端,wordpress,EAV,配置,统计项等都经常使用这个方案。

客户端(APP或者PC),保存个人信息也经常使用这个方案。

今天的重点

以楼主性格,本不会进行“解释”,上文解释这般,说明这一次,楼主真的认真了。对于技术,认真是好事,认真的男人最可爱(打住,我要吐了)。好了,下面的内容才是今天的重点。

五、在线表结构变更

在《啥,又要为表增加一列属性?》文章的开头,已经说明常见“新表+触发器+迁移数据+rename”方案(pt-online-schema-change),这是业内非常成熟的扩展列的方案(以为大伙都熟悉,没有展开讲,只重点讲了两种新方案,这可能是导致被喷得厉害的源头),今天补充说一下。

以user(uid, name, passwd)

扩展到user(uid, name, passwd, age, sex)为例

基本原理是:

(1)先创建一个扩充字段后的新表user_new(uid, name, passwd, age, sex)

(2)在原表user上创建三个触发器,对原表user进行的所有insert/delete/update操作,都会对新表user_new进行相同的操作

(3)分批将原表user中的数据insert到新表user_new,直至数据迁移完成

(4)删掉触发器,把原表移走(默认是drop掉)

(5)把新表user_new重命名(rename)成原表user

扩充字段完成。

优点:整个过程不需要锁表,可以持续对外提供服务

操作过程中需要注意:

(1)变更过程中,最重要的是冲突的处理,一条原则,以触发器的新数据为准,这就要求被迁移的表必须有主键(这个要求基本都满足)

(2)变更过程中,写操作需要建立触发器,所以如果原表已经有很多触发器,方案就不行(互联网大数据高并发的在线业务,一般都禁止使用触发器)

(3)触发器的建立,会影响原表的性能,所以这个操作建议在流量低峰期进行

pt-online-schema-change是DBA必备的利器,比较成熟,在互联网公司使用广泛。

楼主非专业的dba,上面的过程有说的不对的地方,欢迎指出。要了解更详细的细节,可以百度一下。有更好的方法,也欢迎讨论,后续会梳理汇总share给更多的朋友。

六、结束

欢迎用批判的眼光看问题,欢迎任何友善的技术讨论,不太欢迎“纯属误导”“非常蠢的方案”这样的评论(但我还是会加精选,任何人都有发声的权利)。

借评论中@张九云 朋友的一句话“不要以为自己见过的就是全世界,任何方案都有使用场景,一切都是tradeoff”作为今天的结尾,谢谢大家的支持,感谢大家。

==【完】==

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
4月前
|
SQL 分布式计算 大数据
Android项目架构设计问题之平衡技术选型与业务需求之间的关系如何解决
Android项目架构设计问题之平衡技术选型与业务需求之间的关系如何解决
68 0
|
5月前
|
存储 调度 数据库
软件研发核心问题之数据从哪里来,主要包括哪些类型的数据的问题如何解决
软件研发核心问题之数据从哪里来,主要包括哪些类型的数据的问题如何解决
|
5月前
|
Java Spring
通用研发提效问题之配置的若干场景下若干方案的变化该如何解决
通用研发提效问题之配置的若干场景下若干方案的变化该如何解决
|
5月前
|
搜索推荐
业务系统架构实践问题之过细的扩展点颗粒度可能带来问题如何解决
业务系统架构实践问题之过细的扩展点颗粒度可能带来问题如何解决
|
5月前
|
SQL 存储 Oracle
Oracle数据库中游标的工作原理与优化方法
Oracle数据库中游标的工作原理与优化方法
|
7月前
|
前端开发
基于jeecgboot的主从表改造成抽屉式的字典操作模式
基于jeecgboot的主从表改造成抽屉式的字典操作模式
125 0
|
数据采集 供应链 监控
谈谈哪种数据管理模式好
很多组织对更好的数据质量有很高的标准化需求。大多数源自企业内部的活动,如流程优化或源自法律法规的需求。
谈谈哪种数据管理模式好
逻辑难题-问路
逻辑 难题 问路
292 0
|
资源调度 前端开发 安全
5G 逻辑架构的重构 | 带你读《5G时代的承载网》之十一
5G 的架构设计主要需要满足关键性能需求和网络运营需求,为便于理解 5G 架构设计的革新,本节将以现有 4G 的网络架构为基础,逐一分析现有架 构的局限性,对比 5G 新的性能需求和运营需求,对现有架构进行分解、重构, 逐步靠近 3GPP 确定的 5G 新架构。
5G 逻辑架构的重构   | 带你读《5G时代的承载网》之十一