机器学习之卷积神经网络(三)

简介: 假设,有一张大小为32×32×3的输入图片,这是一张RGB模式的图片,你想做手写体数字识别。32×32×3的RGB图片中含有某个数字,比如7,你想识别它是从0-9这10个数字中的哪一个,我们构建一个神经网络来实现这个功能。

假设,有一张大小为32×32×3的输入图片,这是一张RGB模式的图片,你想做手写体数字识别。32×32×3的RGB图片中含有某个数字,比如7,你想识别它是从0-9这10个数字中的哪一个,我们构建一个神经网络来实现这个功能。

我用的这个网络模型和经典网络LeNet-5非常相似,灵感也来源于此。LeNet-5是多年前Yann LeCun创建的,我所采用的模型并不是LeNet-5,但是受它启发,许多参数选择都与LeNet-5相似。输入是32×32×3的矩阵,假设第一层使用过滤器大小为5×5,步幅是1,padding是0,过滤器个数为6,那么输出为28×28×6。将这层标记为CONV1,它用了6个过滤器,增加了偏差,应用了非线性函数,可能是ReLU非线性函数,最后输出CONV1的结果。
_31

然后构建一个池化层,这里我选择用最大池化,参数$f=2$,$s=2$,因为padding为0,我就不写出来了。现在开始构建池化层,最大池化使用的过滤器为2×2,步幅为2,表示层的高度和宽度会减少一半。因此,28×28变成了14×14,通道数量保持不变,所以最终输出为14×14×6,将该输出标记为POOL1。
_32

人们发现在卷积神经网络文献中,卷积有两种分类,这与所谓层的划分存在一致性。一类卷积是一个卷积层和一个池化层一起作为一层,这就是神经网络的Layer1。另一类卷积是把卷积层作为一层,而池化层单独作为一层。人们在计算神经网络有多少层时,通常只统计具有权重和参数的层。因为池化层没有权重和参数,只有一些超参数。这里,我们把CONV1和POOL1共同作为一个卷积,并标记为Layer1。虽然你在阅读网络文章或研究报告时,你可能会看到卷积层和池化层各为一层的情况,这只是两种不同的标记术语。一般我在统计网络层数时,只计算具有权重的层,也就是把CONV1和POOL1作为Layer1。这里我们用CONV1和POOL1来标记,两者都是神经网络Layer1的一部分,POOL1也被划分在Layer1中,因为它没有权重,得到的输出是14×14×6。

我们再为它构建一个卷积层,过滤器大小为5×5,步幅为1,这次我们用10个过滤器,最后输出一个10×10×10的矩阵,标记为CONV2。

然后做最大池化,超参数$f=2$,$s=2$。你大概可以猜出结果,$f=2$,$s=2$,高度和宽度会减半,最后输出为5×5×10,标记为POOL2,这就是神经网络的第二个卷积层,即Layer2。
_33

如果对Layer1应用另一个卷积层,过滤器为5×5,即$f=5$,步幅是1,padding为0,所以这里省略了,过滤器16个,所以CONV2输出为10×10×16。我们看看CONV2,这是CONV2层。

_34
_35

_36

继续执行做大池化计算,参数$f=2$,$s=2$,你能猜到结果么?对10×10×16输入执行最大池化计算,参数$f=2$,$s=2$,高度和宽度减半,计算结果猜到了吧。最大池化的参数$f=2$,$s=2$,输入的高度和宽度会减半,结果为5×5×16,通道数和之前一样,标记为POOL2。这是一个卷积,即Layer2,因为它只有一个权重集和一个卷积层CONV2。
_37

5×5×16矩阵包含400个元素,现在将POOL2平整化为一个大小为400的一维向量。我们可以把平整化结果想象成这样的一个神经元集合,然后利用这400个单元构建下一层。下一层含有120个单元,这就是我们第一个全连接层,标记为FC3。这400个单元与120个单元紧密相连,这就是全连接层。它很像我们在第一和第二门课中讲过的单神经网络层,这是一个标准的神经网络。它的权重矩阵为$W^{\left\lbrack 3 \right\rbrack}$,维度为120×400。这就是所谓的“全连接”,因为这400个单元与这120个单元的每一项连接,还有一个偏差参数。最后输出120个维度,因为有120个输出。

然后我们对这个120个单元再添加一个全连接层,这层更小,假设它含有84个单元,标记为FC4。
_38

最后,用这84个单元填充一个softmax单元。如果我们想通过手写数字识别来识别手写0-9这10个数字,这个softmax就会有10个输出。

此例中的卷积神经网络很典型,看上去它有很多超参数,关于如何选定这些参数,后面我提供更多建议。常规做法是,尽量不要自己设置超参数,而是查看文献中别人采用了哪些超参数,选一个在别人任务中效果很好的架构,那么它也有可能适用于你自己的应用程序,这块下周我会细讲。

_39

现在,我想指出的是,随着神经网络深度的加深,高度$n{H}$和宽度$n{W}$通常都会减少,前面我就提到过,从32×32到28×28,到14×14,到10×10,再到5×5。所以随着层数增加,高度和宽度都会减小,而通道数量会增加,从3到6到16不断增加,然后得到一个全连接层。

在神经网络中,另一种常见模式就是一个或多个卷积后面跟随一个池化层,然后一个或多个卷积层后面再跟一个池化层,然后是几个全连接层,最后是一个softmax。这是神经网络的另一种常见模式。

接下来我们讲讲神经网络的激活值形状,激活值大小和参数数量。输入为32×32×3,这些数做乘法,结果为3072,所以激活值$a^{[0]}$有3072维,激活值矩阵为32×32×3,输入层没有参数。计算其他层的时候,试着自己计算出激活值,这些都是网络中不同层的激活值形状和激活值大小。

有几点要注意,第一,池化层和最大池化层没有参数;第二卷积层的参数相对较少,前面课上我们提到过,其实许多参数都存在于神经网络的全连接层。观察可发现,随着神经网络的加深,激活值尺寸会逐渐变小,如果激活值尺寸下降太快,也会影响神经网络性能。示例中,激活值尺寸在第一层为6000,然后减少到1600,慢慢减少到84,最后输出softmax结果。我们发现,许多卷积网络都具有这些属性,模式上也相似。
_40

神经网络的基本构造模块我们已经讲完了,一个卷积神经网络包括卷积层、池化层和全连接层。许多计算机视觉研究正在探索如何把这些基本模块整合起来,构建高效的神经网络,整合这些基本模块确实需要深入的理解。根据我的经验,找到整合基本构造模块最好方法就是大量阅读别人的案例。

以上内容参考安全牛课堂 机器学习与网络安全 第4章节 卷积神经网络

相关文章
|
3月前
|
机器学习/深度学习 数据采集 运维
机器学习在网络流量预测中的应用:运维人员的智慧水晶球?
机器学习在网络流量预测中的应用:运维人员的智慧水晶球?
169 19
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
4月前
|
机器学习/深度学习 边缘计算 运维
机器学习在网络安全中的防护:智能化的安全屏障
机器学习在网络安全中的防护:智能化的安全屏障
342 15
|
5月前
|
人工智能 搜索推荐 决策智能
不靠更复杂的策略,仅凭和大模型训练对齐,零样本零经验单LLM调用,成为网络任务智能体新SOTA
近期研究通过调整网络智能体的观察和动作空间,使其与大型语言模型(LLM)的能力对齐,显著提升了基于LLM的网络智能体性能。AgentOccam智能体在WebArena基准上超越了先前方法,成功率提升26.6个点(+161%)。该研究强调了与LLM训练目标一致的重要性,为网络任务自动化提供了新思路,但也指出其性能受限于LLM能力及任务复杂度。论文链接:https://arxiv.org/abs/2410.13825。
111 12
|
6月前
|
机器学习/深度学习 人工智能 数据挖掘
打破传统:机器学习与神经网络获2024年诺贝尔物理学奖引发的思考
诺贝尔物理学奖首次授予机器学习与神经网络领域,标志该技术在物理学研究中的重要地位。本文探讨了这一决定对物理学研究的深远影响,包括数据分析、理论物理突破及未来科研方向的启示,同时分析了其对学术跨界合作与全球科研产业的影响。
107 4
|
6月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
428 1
|
6月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
339 6
|
1月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
96 6
|
4月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
737 13
机器学习算法的优化与改进:提升模型性能的策略与方法

热门文章

最新文章