【Hadoop Summit Tokyo 2016】像搭乐高一样搭建Storm与Spark Streaming Pipelines块

简介: 本讲义出自Arun Murthy在Hadoop Summit Tokyo 2016上的演讲,主要介绍了Arun Murthy与团队的从各种流使用中学习到的最佳实践和经验,演讲的内容非常简单易懂并且非常有趣,在演讲的最后还介绍了像搭乐高一样搭建Storm与Spark Streaming Pipelines块的相应工具。

本讲义出自Arun Murthy在Hadoop Summit Tokyo 2016上的演讲,主要介绍了Arun Murthy与团队的从各种流使用中学习到的最佳实践和经验,演讲的内容非常简单易懂并且非常有趣,在演讲的最后还介绍了像搭乐高一样搭建Storm与Spark Streaming Pipelines块的相应工具。

6d5b44474d7b31ee05069a29480a1de19ff096e5

f7a8225e61ec16df2865c8bca96ef5711be34094

3e83ece3c1e328ce031c1d507e26b41e632ec3c2

1bdc8ee7ef9f0bd2c6ef100030e6364a3212197a

e68d6979843ea70f4719dded7897699de3945cbe

b1e5373ce04eb2db15494ac723fab9b4054b14eb

bedfb2838043cc3be2b91e7dd929ba832e02e3d2

8e76cde49a1cd3d5e4add5991d772b6fbb81c3c2

138b98783e112c6bc38b02414028c89283dae9f4

dbff3c8861a79e37c6e395067f010cd0a9b42587

9b17397a81aa9ff243f83f09ede1db9da46c11bf

9390dfc066e95ddabd3f4081b2da3a44e2657349

effa60a399cce70536055f28fb1f0e8746ba32a7

5f846db819cecfa20b8f7bd91f37b1eda3522664

018b5722fa1a3d53f93e16d071beb0994290dd39

相关文章
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
148 6
|
1月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
64 2
|
15天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
59 2
|
16天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
56 1
|
3月前
|
分布式计算 Hadoop 大数据
Spark 与 Hadoop 的大数据之战:一场惊心动魄的技术较量,决定数据处理的霸权归属!
【8月更文挑战第7天】无论是 Spark 的高效内存计算,还是 Hadoop 的大规模数据存储和处理能力,它们都为大数据的发展做出了重要贡献。
82 2
|
3月前
|
存储 分布式计算 资源调度
Hadoop生态系统概览:从HDFS到Spark
【8月更文第28天】Hadoop是一个开源软件框架,用于分布式存储和处理大规模数据集。它由多个组件构成,旨在提供高可靠性、高可扩展性和成本效益的数据处理解决方案。本文将介绍Hadoop的核心组件,包括HDFS、MapReduce、YARN,并探讨它们如何与现代大数据处理工具如Spark集成。
223 0
|
4月前
|
分布式计算 Hadoop 大数据
Hadoop与Spark在大数据处理中的对比
【7月更文挑战第30天】Hadoop和Spark在大数据处理中各有优势,选择哪个框架取决于具体的应用场景和需求。Hadoop适合处理大规模数据的离线分析,而Spark则更适合需要快速响应和迭代计算的应用场景。在实际应用中,可以根据数据处理的需求、系统的可扩展性、成本效益等因素综合考虑,选择适合的框架进行大数据处理。
|
3月前
|
分布式计算 Hadoop 大数据
大数据处理框架在零售业的应用:Apache Hadoop与Apache Spark
【8月更文挑战第20天】Apache Hadoop和Apache Spark为处理海量零售户数据提供了强大的支持
63 0
|
5月前
|
分布式计算 资源调度 Hadoop
Java大数据处理:Spark与Hadoop整合
Java大数据处理:Spark与Hadoop整合
|
5月前
|
分布式计算 资源调度 Java
Scala+Spark+Hadoop+IDEA实现WordCount单词计数,上传并执行任务(简单实例-下)
Scala+Spark+Hadoop+IDEA实现WordCount单词计数,上传并执行任务(简单实例-下)
58 0

相关实验场景

更多