日志服务数据加工最佳实践: 从RDS-MySQL拉取数据做富化

简介: 本篇覆盖日志服务数据加工最佳实践: 从RDS-MySQL拉取数据做富化的各种场景, 包括定期刷新拉取所有, 拉取部分数据, 拉取后再过滤数据, 调整返回表格结构等

概述

使用全局富化函数做富化时, 需要传递一个字典或者表格结构做富化. 参考构建字典与表格做数据富化的各种途径比较.
本篇介绍从使用资源函数res_rds_mysql从RDS-MySQL拉取数据的做富化的详细实践.关于res_rds_mysql的参数说明, 参考这里.

背景

这里我们在RDS中存放用户信息表格userinfo.
原始数据库表中内容:

id province city uid
1 jiangsu nanjing 01234
2 henan zhengzhou 01235
3 heilongjiang haerbin 01236
4 jiangsu yantai 01237

场景1:定期刷新拉取所有

富化数据如果定期会全量刷新时, 希望数据加工任务能够自动定期去拉取, 可以如下配置:

res_rds_mysql(..., refresh_interval=300)

上述语法会返回一个表格结构, 并且会自动跟踪表格, 每隔5分钟重新拉取一遍mysql 表的内容并刷新这个表格内容。

场景2:拉取部分数据

如果仅仅使用RDS-MySQL中个别字段做富化, 推荐使用参数table, sqlfields来进行或者列过滤. 这样可以降低维表大小, 增加富化效率.

如下进行列过滤, 值选择cityuid列, 两者效果没有任何区别.

res_rds_mysql(..., sql="select city, uid from userinfo")      # 列过滤
res_rds_mysql(..., table="userinfo", fields=["city", "uid"])    # 列过滤

如下使用sql进行列与的行过滤, 选择所有uid > 1234的数据.

res_rds_mysql(..., sql="select * from userinfo where uid > 1234")   # 行过滤
res_rds_mysql(..., sql="select city, uid from userinfo where uid > 1234")   # 行列过滤

场景3:拉取后再过滤数据

在使用参数table, sqlfields来进行或者列过滤不能满足需求时, 可以进一步使用参数fetch_exclude_data和/或fetch_include_data来进行过滤.

例如:

res_rds_mysql(..., fetch_include_data="uid==0123*")   # 保留所有uid以0123开头的数据
res_rds_mysql(..., fetch_exclude_data="uid < 1234")    # 去除所有uid小于1234的数据
res_rds_mysql(..., fetch_include_data="city:n", fetch_exclude_data="uid < 1234") 

参考以上注释了解两者区别, 注意到这里的这两个参数的格式都是查询字符串.
同时配置fetch_exclude_datafetch_include_data, 会优先执行fetch_exclude_data语法,将不符合的数据剔除,然后在执行fetch_include_data语法,将符合的数据添加进来,fetch_exclude_data和fetch_exclude_data参数语法都是根据e_search语法,支持正则匹配,模糊匹配等多种方式,上述第三行语法含义为,拉取表中uid大于等于1234, 且以city包含字母n的所有数据做维表.

注意: 这种过滤是在拉取数据到本地后再进行过滤, 因此效率没有参数table, sqlfields过滤高.

场景4:调整返回表格结构

默认返回的表格列名与RDS-MySQL中的表格结构一致, 如果需要调整, 例如将province字段编程prov等, 可以使用如下方法:

res_rds_mysql(..., sql="select id, uid, province as prov, city from userinfo")
res_rds_mysql(..., table="userinfo", fields=["id", "uid", ("province", "prov"), "city" ])

两个方法是一样效果. 关于fields参数, 可以进一步参考数据列列表

进一步参考

欢迎扫码加入官方钉钉群获得实时更新与阿里云工程师的及时直接的支持:
image

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
4月前
|
SQL 人工智能 关系型数据库
AI Agent的未来之争:任务规划,该由人主导还是AI自主?——阿里云RDS AI助手的最佳实践
AI Agent的规划能力需权衡自主与人工。阿里云RDS AI助手实践表明:开放场景可由大模型自主规划,高频垂直场景则宜采用人工SOP驱动,结合案例库与混合架构,实现稳定、可解释的企业级应用,推动AI从“能聊”走向“能用”。
1051 39
AI Agent的未来之争:任务规划,该由人主导还是AI自主?——阿里云RDS AI助手的最佳实践
|
9月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
7月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
389 0
|
5月前
|
Prometheus 监控 Java
日志收集和Spring 微服务监控的最佳实践
在微服务架构中,日志记录与监控对系统稳定性、问题排查和性能优化至关重要。本文介绍了在 Spring 微服务中实现高效日志记录与监控的最佳实践,涵盖日志级别选择、结构化日志、集中记录、服务ID跟踪、上下文信息添加、日志轮转,以及使用 Spring Boot Actuator、Micrometer、Prometheus、Grafana、ELK 堆栈等工具进行监控与可视化。通过这些方法,可提升系统的可观测性与运维效率。
531 1
日志收集和Spring 微服务监控的最佳实践
|
5月前
|
负载均衡 监控 安全
5 个 IIS 日志记录最佳实践
IIS日志记录是监控Web服务器性能与安全的关键。本文介绍启用日志、应用池配置、负载均衡、敏感数据防护、日志集中管理及保留策略等五大最佳实践,助力高效分析与合规审计。
345 1
|
6月前
|
存储 关系型数据库 MySQL
在CentOS 8.x上安装Percona Xtrabackup工具备份MySQL数据步骤。
以上就是在CentOS8.x上通过Perconaxtabbackup工具对Mysql进行高效率、高可靠性、无锁定影响地实现在线快速全量及增加式数据库资料保存与恢复流程。通过以上流程可以有效地将Mysql相关资料按需求完成定期或不定期地保存与灾难恢复需求。
509 10
|
7月前
|
SQL 存储 缓存
MySQL 如何高效可靠处理持久化数据
本文详细解析了 MySQL 的 SQL 执行流程、crash-safe 机制及性能优化策略。内容涵盖连接器、分析器、优化器、执行器与存储引擎的工作原理,深入探讨 redolog 与 binlog 的两阶段提交机制,并分析日志策略、组提交、脏页刷盘等关键性能优化手段,帮助提升数据库稳定性与执行效率。
189 0
日志服务数据加工最佳实践: 加工多层数组对象嵌套的复杂JSON
许多程序的数据结构是一个复杂的包括多层数组嵌套的对象, 本篇介绍使用日志服务数据加工处理多层数组对象嵌套的复杂JSON.
1589 0
|
9月前
|
监控 容灾 算法
阿里云 SLS 多云日志接入最佳实践:链路、成本与高可用性优化
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
953 54

相关产品

  • 日志服务
  • 推荐镜像

    更多