蚂蚁金服通信框架SOFABolt解析 | 编解码机制

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: Scalable Open Financial Architecture是蚂蚁金服自主研发的金融级分布式中间件,包含了构建金融级云原生架构所需的各个组件,是在金融场景里锤炼出来的最佳实践。

SOFA

Scalable Open Financial Architecture

是蚂蚁金服自主研发的金融级分布式中间件,包含了构建金融级云原生架构所需的各个组件,是在金融场景里锤炼出来的最佳实践。

本文为《蚂蚁金服通信框架SOFABolt解析》系列第一篇,作者水寒,就职于网易考拉。《蚂蚁金服通信框架SOFABolt解析》系列由 SOFA 团队和源码爱好者们出品。

目前已经完成的源码系列《剖析 | SOFARPC 框架》系列可在文末获取

image.png

基础介绍
SOFABolt 是蚂蚁金服开发的一套基于 Netty 实现的网络通信框架。

为了让 Java 程序员能将更多的精力放在基于网络通信的业务逻辑实现上,而不是过多的纠结于网络底层 NIO 的实现以及处理难以调试的网络问题,Netty 应运而生。

为了让中间件开发者能将更多的精力放在产品功能特性实现上,而不是重复地一遍遍制造通信框架的轮子,SOFABolt 应运而生。

Bolt 名字取自迪士尼动画-闪电狗,是一个基于 Netty 最佳实践的轻量、易用、高性能、易扩展的通信框架。

这些年我们在微服务与消息中间件在网络通信上解决过很多问题,积累了很多经验,并持续的进行着优化和完善,我们希望能把总结出的解决方案沉淀到 SOFABolt 这个基础组件里,让更多的使用网络通信的场景能够统一受益。 目前该产品已经运用在了蚂蚁中间件的微服务 (SOFARPC)、消息中心、分布式事务、分布式开关、以及配置中心等众多产品上。

前言
SOFABolt 提供了设计良好、使用便捷的编解码功能。本篇我们会依次介绍编解码的概念, TCP 粘包拆包问题,SOFABolt 私有通信协议的设计,以及SOFABolt 编解码原理,最后还会介绍一下相较于 Netty,我们做出的优化。欢迎大家与我们讨论交流。

编解码介绍
每个网络应用程序都必须定义如何解析在两个节点之间来回传输的原始字节,以及如何将其和目标应用程序的数据格式做相互转换。在一个成熟的通信框架中,我们通常都会通过私有通信协议来描述这种定义,通过编解码技术将理论上的私有通信协议转化为实践。

通过编解码技术,我们可以方便的做一些逻辑,例如双方可以方便的统一序列化与反序列化方式、解决 TCP 拆包粘包问题等。

下面,我们先来看一下 TCP 粘包拆包问题的产生,然后分析 Netty 是如何解决粘包拆包问题的,最后分析 SOFABolt 是如何解决粘包拆包问题的。

TCP 粘包拆包问题
image.png

如上图所示,三种拆包原因见黄色标签说明;两种粘包原因见蓝色标签说明。TCP 本身是面向流的,它无法从源源不断涌来的数据流中拆分出或者合并出有意义的信息,通常可以通过以下几种方式来解决:
基于分隔符协议:使用定义的字符来标记一个消息的结尾,在编码的时候我们在消息尾部添加指定的分隔符,在解码的时候根据分隔符来拆分或者合并消息。Netty 提供了两种基于分隔符协议的解码器 LineBasedFrameDecoder 和 DelimiterBasedFrameDecoder。LineBasedFrameDecoder 指定以 n 或者 rn 作为消息的分隔符;DelimiterBasedFrameDecoder 使用用户自定义的分隔符来标记消息的结尾。

基于定长消息协议:每一个消息在编码的时候都使用固定的长度,在解码的时候根据这个长度进行消息的拆分和合并。Netty 提供了 FixedLengthFrameDecoder 解码器来实现定长消息解码。

基于变长消息协议:每一个消息分为消息头和消息体两部分,在编码时,将消息体的长度设置到消息头部,在解码的时候,首先解析出消息头部的长度信息,之后拆分或合并出该长度的消息体。Netty 提供了 LengthFieldBasedFrameDecoder 来实现变长消息协议解码。

基于私有通信协议:Netty 提供了 MessageToByteEncoder 和 ByteToMessageDecoder 两个抽象类,这两个抽象类提供了基本的编解码模板。用户可以通过继承这两个类来实现自定义的编解码器。SOFABolt 通过继承 MessageToByteEncoder 实现了自定义的编码器,通过继承修改版的 ByteToMessageDecoder 来实现了解码器。对于处理 TCP 粘包拆包问题,SOFABolt 实际上也是使用变长消息协议,SOFABolt 的私有通信协议将消息体分为三部分 className、header、body,在消息头对应的提供了 classLen、headerLen、bodyContent 分别标识三部分的长度,之后就可以基于这三个长度信息进行消息的拆分和合并。

对于一个成熟的 rpc 框架或者通信框架来讲,编解码器不仅仅是要处理粘包拆包问题,还要实现一些特有的需求,所以必须制定一些私有通信协议,下面来看一下 SOFABolt 的私有通信协议的设计。

SOFABolt 私有通信协议的设计
以下分析以 SOFABolt 1.5.1 版本为例。SOFABolt 定义了两种协议 RpcProtocol 和 RpcProtocolV2。针对这两种协议,提供了两组不同的编解码器。

RpcProtocol 协议定义
请求命令(协议头长度:22 byte)
image.png

ProtocolCode :这个字段是必须的。因为需要根据 ProtocolCode 来进入不同的核心编解码器。该字段可以在想换协议的时候,方便的进行更换。

RequestType :请求类型,request / response / oneway 三者之一。oneway 之所以需要单独设置,是因为在处理响应时,需要做特殊判断,来控制响应是否回传。

CommandCode :请求命令类型,request / response / heartbeat 三者之一。

CommandVersion :请求命令版本号。该字段用来区分请求命令的不同版本。如果修改 Command 版本,不修改协议,那么就是纯粹代码重构的需求;除此情况,Command 的版本升级,往往会同步做协议的升级。

RequestId :请求 ID,该字段主要用于异步请求时,保留请求存根使用,便于响应回来时触发回调。另外,在日志打印与问题调试时,也需要该字段。

Codec :序列化器。该字段用于保存在做业务的序列化时,使用的是哪种序列化器。通信框架不限定序列化方式,可以方便的扩展。

Timeout :超时字段,客户端发起请求时,所设置的超时时间。

ClassLen :业务请求类名长度

HeaderLen :业务请求头长度

ContentLen :业务请求体长度

ClassName :业务请求类名。需要注意类名传输的时候,务必指定字符集,不要依赖系统的默认字符集。曾经线上的机器,因为运维误操作,默认的字符集被修改,导致字符的传输出现编解码问题。而我们的通信框架指定了默认字符集,因此躲过一劫。

HeaderContent :业务请求头

BodyContent :业务请求体

响应命令(协议头长度:20 byte)
image.png

ResponseStatus :响应码。从字段精简的角度,我们不可能每次响应都带上完整的异常栈给客户端排查问题,因此,我们会定义一些响应码,通过编号进行网络传输,方便客户端定位问题。

RpcProtocolV2 协议定义
请求命令(协议头长度:24 byte)
image.png

ProtocolVersion :确定了某一种通信协议后,我们还需要考虑协议的微小调整需求,因此需要增加一个 version 的字段,方便在协议上追加新的字段

Switch :协议开关,用于一些协议级别的开关控制,比如 CRC 校验,安全校验等。

CRC32 :CRC校验码,这也是通信场景里必不可少的一部分,而我们金融业务属性的特征,这个显得尤为重要。

响应命令(协议头长度:22 byte)
image.png

SOFABolt 针对 RpcProtocol 和 RpcProtocolV2 这两种协议,提供了两组不同的编解码器。下面我们来看一下编解码器的设计原理。

SOFABolt 编解码原理
image.png

上图仅列出编解码中最主要的类。

RpcCodec 是工厂类,创建 ProtocolCodeBasedEncoder 和 ProtocolCodeBasedDecoder(实际上是其子类),二者被设置为 netty 的编解码器 handler - 工厂模式

MessageToByteEncoder 提供了编码模板,该类由 netty 本身提供;AbstractBatchDecoder 提供了解码模板,由 SOFABolt 提供,该类是 ByteToMessageDecoder 的 hack 版本,相较于 netty 提供了批量提交的功能 - 模板模式

ProtocolCodeBasedEncoder 和 ProtocolCodeBasedDecoder 分别是 CommandEncoder 和 CommandDecoder 的代理类,通过不同的 protocol 协议,指定使用不同的编解码器 - 代理模式和策略模式

最下层的四个编解码器:Xxx 是 RpcProtocol 协议数据的编解码器;XxxV2 是RpcProtocolV2 协议数据的编解码器

  1. 编码原理
    如上述类图所示,SOFABolt 的编码器 ProtocolCodeBasedEncoder 是继承 MessageToByteEncoder 的,MessageToByteEncoder 为 ProtocolCodeBasedEncoder 提供了编码模板。在 MessageToByteEncoder 中调用了子类 ProtocolCodeBasedEncoder 的实际编码代码,大致流程如下所示:

image.png

上图只列出了部分核心代码,详细代码见 SOFABolt 源码与 Netty 源码。

判断传入的数据是否是 Serializable 类型(该类型由 MessageToByteEncoder 的泛型指定),如果不是,直接传播给 pipeline 中的下一个 handler;否则

创建一个 ByteBuf 实例,用于存储最终的编码数据

从 channel 的附加属性中获取协议标识 protocolCode,之后从协议管理器中获取相应的协议对象

再从协议对象中获取相应的 CommandEncoder 实现类实例,使用 CommandEncoder 实现类实例按照上文所介绍的协议规则将数据写入到第二步创建好的 ByteBuf 实例中

如果原始数据是 ReferenceCounted 实现类,则释放原始数据

如果 ByteBuf 中有数据了,则传播给 pipeline 中的下一个 handler;否则,释放该 ByteBuf 对象,传递一个空的 ByteBuf 给下一个 handler

注意:

由第一步可知,在 SOFABolt 中,数据要想经过编码器的处理,必须实现 Serializable 接口。

编码器是无状态的,可以标注注解 @ChannelHandler.Sharable

  1. 解码原理
    SOFABolt 的解码器 ProtocolCodeBasedDecoder 是继承 AbstractBatchDecoder 的,AbstractBatchDecoder 为 ProtocolCodeBasedDecoder 提供了解码模板。在 AbstractBatchDecoder 中调用了子类 ProtocolCodeBasedDecoder 的实际解码代码,如下所示:

image.png

上图只列出了部分核心代码

创建或者从 netty 的回收池中获取一个 RecyclableArrayList 实例,用于存储最终的解码数据

将传入的 ByteBuf 添加到 Cumulator 累加器实例中

之后不断的从 ByteBuf 中读取数据:首先解码出protocolCode,之后从协议管理器中获取相应的协议对象,再从协议对象中获取相应的 CommandDecoder 实现类实例

使用 CommandDecoder 实现类实例按照上文所介绍的协议规则进行解码,将解码好的数据放到 RecyclableArrayList 实例中,需要注意的是在解码之前必须先记录当前 ByteBuf 的 readerIndex,如果发现数据不够一个整包长度(发生了拆包粘包问题),则将当前 ByteBuf 的 readerIndex 复原到解码之前,然后直接返回,等待读取更多的数据

为了防止发送端发送数据太快导致OOM,会清理 Cumulator 累加器实例或者其空间,将已经读取的字节删除,向左压缩 ByteBuf 空间

判断 RecyclableArrayList 中的元素个数,如果是1个,则将这个元素单个发送给 pipeline 的下一个 handler;如果元素大于1个,则将整个 RecyclableArrayList 以 List 形式发送给 pipeline 的下一个 handler。后续的 handler 就可以以如下的方式进行消息的处理。

image.png

回收 RecyclableArrayList 实例

注意:解码器是有状态的,不可标注注解 @ChannelHandler.Sharable

最后我们介绍一下 SOFABolt 解码器相较于 Netty 作出的优化。

SOFABolt 解码器相较于 Netty 作出的优化

image.png

(图片来自 蚂蚁通信框架实践)

Netty 提供了一个方便的解码工具类 ByteToMessageDecoder ,如图上半部分所示,这个类具备 accumulate 批量解包能力,可以尽可能的从 socket 里读取字节,然后同步调用 decode 方法,解码出业务对象,并组成一个 List 。最后再循环遍历该 List ,依次提交到 ChannelPipeline 进行处理。此处我们做了一个细小的改动,如图下半部分所示,即将提交的内容从单个 command ,改为整个 List 一起提交,如此能减少 pipeline 的执行次数,同时提升吞吐量。这个模式在低并发场景,并没有什么优势,而在高并发场景下对提升吞吐量有不小的性能提升。

参考文档
蚂蚁通信框架实践

nio-trick-and-trap

《netty实战》

相关链接

SOFA 文档: http://www.sofastack.tech/

SOFA: https://github.com/alipay

SOFARPC: https://github.com/alipay/sofa-rpc

SOFABolt: https://github.com/alipay/sofa-bolt

目录
相关文章
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
87 2
|
3月前
|
存储 Java
深入探讨了Java集合框架中的HashSet和TreeSet,解析了两者在元素存储上的无序与有序特性。
【10月更文挑战第16天】本文深入探讨了Java集合框架中的HashSet和TreeSet,解析了两者在元素存储上的无序与有序特性。HashSet基于哈希表实现,添加元素时根据哈希值分布,遍历时顺序不可预测;而TreeSet利用红黑树结构,按自然顺序或自定义顺序存储元素,确保遍历时有序输出。文章还提供了示例代码,帮助读者更好地理解这两种集合类型的使用场景和内部机制。
49 3
|
10天前
|
设计模式 XML Java
【23种设计模式·全精解析 | 自定义Spring框架篇】Spring核心源码分析+自定义Spring的IOC功能,依赖注入功能
本文详细介绍了Spring框架的核心功能,并通过手写自定义Spring框架的方式,深入理解了Spring的IOC(控制反转)和DI(依赖注入)功能,并且学会实际运用设计模式到真实开发中。
【23种设计模式·全精解析 | 自定义Spring框架篇】Spring核心源码分析+自定义Spring的IOC功能,依赖注入功能
|
30天前
|
PHP 开发者 UED
PHP中的异常处理机制解析####
本文深入探讨了PHP中的异常处理机制,通过实例解析try-catch语句的用法,并对比传统错误处理方式,揭示其在提升代码健壮性与可维护性方面的优势。文章还简要介绍了自定义异常类的创建及其应用场景,为开发者提供实用的技术参考。 ####
|
2月前
|
存储 缓存 监控
后端开发中的缓存机制:深度解析与最佳实践####
本文深入探讨了后端开发中不可或缺的一环——缓存机制,旨在为读者提供一份详尽的指南,涵盖缓存的基本原理、常见类型(如内存缓存、磁盘缓存、分布式缓存等)、主流技术选型(Redis、Memcached、Ehcache等),以及在实际项目中如何根据业务需求设计并实施高效的缓存策略。不同于常规摘要的概述性质,本摘要直接点明文章将围绕“深度解析”与“最佳实践”两大核心展开,既适合初学者构建基础认知框架,也为有经验的开发者提供优化建议与实战技巧。 ####
|
2月前
|
缓存 NoSQL Java
千万级电商线上无阻塞双buffer缓冲优化ID生成机制深度解析
【11月更文挑战第30天】在千万级电商系统中,ID生成机制是核心基础设施之一。一个高效、可靠的ID生成系统对于保障系统的稳定性和性能至关重要。本文将深入探讨一种在千万级电商线上广泛应用的ID生成机制——无阻塞双buffer缓冲优化方案。本文从概述、功能点、背景、业务点、底层原理等多个维度进行解析,并通过Java语言实现多个示例,指出各自实践的优缺点。希望给需要的同学提供一些参考。
50 7
|
1月前
|
Java 数据库连接 开发者
Java中的异常处理机制:深入解析与最佳实践####
本文旨在为Java开发者提供一份关于异常处理机制的全面指南,从基础概念到高级技巧,涵盖try-catch结构、自定义异常、异常链分析以及最佳实践策略。不同于传统的摘要概述,本文将以一个实际项目案例为线索,逐步揭示如何高效地管理运行时错误,提升代码的健壮性和可维护性。通过对比常见误区与优化方案,读者将获得编写更加健壮Java应用程序的实用知识。 --- ####
|
2月前
|
Java 开发者 Spring
深入解析:Spring AOP的底层实现机制
在现代软件开发中,Spring框架的AOP(面向切面编程)功能因其能够有效分离横切关注点(如日志记录、事务管理等)而备受青睐。本文将深入探讨Spring AOP的底层原理,揭示其如何通过动态代理技术实现方法的增强。
76 8
|
2月前
|
Java 测试技术 API
Java 反射机制:深入解析与应用实践
《Java反射机制:深入解析与应用实践》全面解析Java反射API,探讨其内部运作原理、应用场景及最佳实践,帮助开发者掌握利用反射增强程序灵活性与可扩展性的技巧。
119 4
|
2月前
|
存储 消息中间件 算法
深入探索操作系统的心脏——内核机制解析
本文旨在揭示操作系统核心——内核的工作原理,通过剖析其关键组件与机制,为读者提供一个清晰的内核结构图景。不同于常规摘要的概述性内容,本文摘要将直接聚焦于内核的核心概念、主要功能以及其在系统管理中扮演的角色,旨在激发读者对操作系统深层次运作原理的兴趣与理解。

推荐镜像

更多