交易数据清算从8小时缩至1.5小时,飞天大数据平台MaxCompute解决余额宝算力难题

简介: 关于天弘:天弘基金作为国内总规模最大的公募基金,阿里云MaxCompute为我们构建了企业级一站式大数据解决方案。MaxCompute对于海量数据的存储、运维、计算能力强大且安全稳定,阿里云服务将原本需要清算8小时的用户交易数据缩短至清算1个半小时,同时减少了本地服务器部署压力,在显著提升我们工作效率的同时减少了大量开发成本和人力成本,使我们能更专注于业务发展,为用户提供高品质、高价值的金融服务。

天弘基金作为国内总规模最大的公募基金,阿里云MaxCompute为我们构建了企业级一站式大数据解决方案。MaxCompute对于海量数据的存储、运维、计算能力强大且安全稳定,MaxCompute服务将原本需要清算8小时的用户交易数据缩短至清算1个半小时,同时减少了本地服务器部署压力,在显著提升我们工作效率的同时减少了大量开发成本和人力成本,使我们能更专注于业务发展,为用户提供高品质、高价值的金融服务。

背景:
随着余额宝用户数持续呈指数级增长,数据量也成倍增长。在这种情况之下,已经无法通过简单的hadoop集群进行数据的管理工作,而业务端面临需要通过数据了解用户、分析行为进而对业务决策和用户行为进行精准预测。基于这些业务的需求驱动需要一个大数据平台来承载,我们在对稳定性、成本、自身能力和复杂度等进行综合考量后,决定采用当前最流行和最成熟的云平台·阿里云MaxCompute。

目标:
搭建大数据平台从技术指标的角度是数据存储和数据计算两大目标,而从各个业务环节的角度看是数据采集、数据清洗、在线/离线分析与预测、实时/非实时查询。而业务目标是为了能够快速响应业务需求,能够为业务分析提供稳定的开发和建模平台,为业务提供逻辑清晰和灵活便捷的可视化平台。从而实现从数据支持业务到数据驱动业务的逐步升级。

解决方案及架构:
20190730225247

整个架构都是搭建在阿里云上的,该架构是成熟的三层架构:采集层+整合层+应用层。

采集层:
采集层对接了我们几乎所有的业务,采集数据的频率有实时的、分钟级、小时级、日级、月级,支持不同的采集频率,而且这些都是灵活可配置的。将采集的数据通过企业级的数据交换平台进行存储和交换,该平台使用OSS实现。通过OSS可以实现数据的中转、分发和备份存储。

整合层:
在MaxCompute整个整合层包含了五大区:缓冲区、ODS区、整合区、主数据和汇总区。不同的区域为了实现不同的功能,缓冲区是为了在正式进入数仓应用数据模块之前进行数据质检,满足质检后方可进行真正的加工处理,避免因为数据错误污染整个数仓的数据;ODS区是为了保留源系统格式的数据模块,一方面能够在有问题时追根溯源,另一方面能够满足部分业务的需要;整合区是数据仓库的核心区域,通过主题建模的方式进行数据的模型化处理,使得数据的解释口径具有统一性;主数据则是与业务结合比较紧密的主题数据,这样更方便业务方的使用;汇总区则是提前将需要预加工统计的数据进行统计计算,避免多次开发计算带来的时间成本、开发成本和计算成本等。

应用层:
应用层主要是通过监控、管理看板、报表等可视化系统给业务提供直观的数据呈现,从而为业务的决策提供更加有力的数据支撑。在应用层通过RDS、ADS、HBase等不同的产品满足了不同的需求。

对于数据仓库来说是一个比较复杂的系统,需要很多配套的系统辅助才能做好这样的项目。而其中很多系统在MaxCompute、DataWorks中都已经产品化,大大的简化了大数据平台的搭建和运维,提供了一站式的解决方案,而且通过阿里云MaxCompute、Dataworks能够实现敏捷开发、快速响应、轻量化运维、低成本的实现大数据平台架构。其中包括最核心的调度系统、权限管理、元数据管控、数据安全保护伞等等一系列功能。而在使用中,数据分析师能够快速上手完成数据的加工和分析。

业务价值案例:

收益王者:
收益王者产品帮助广大用户追踪头部用户的交易行为,使用用户自身数据来影响用户心智,满足了用户的窥私欲、攀比欲。该产品为用户提供了投顾化的数据服务,为公司提升了用户粘性及交易转化,在2018年实现销量数亿元。在开发过程中,MaxCompute帮助我们快速、精准地处理海量用户交易数据,为该产品数据的准确性、稳定性、及时性提供了有力的保障。

产品AI推荐:
_1

我们根据用户自身属性、交易行为、资产属性以及与他类似的用户的产品关注和交易行为,预测每位用户当前最感兴趣的基金。产品AI推荐与传统的仅从市场出发的产品推荐不同,我们从用户的角度,根据用户的行为数据,做出千人千面的产品推荐,提升了用户体验,并提升了交易转化率。在特征加工、模型开发、预测结果投入使用的过程中,Dataworks为我们提供了整套技术架构,包括算力强大的MaxCompute、组件丰富的PAI机器学习平台以及ADS、RDS等产品,满足了我们各方各面的需求。

欢迎加入“MaxCompute开发者社区2群”,点击链接申请加入或扫描二维码
https://h5.dingtalk.com/invite-page/index.html?bizSource=____source____&corpId=dingb682fb31ec15e09f35c2f4657eb6378f&inviterUid=E3F28CD2308408A8&encodeDeptId=0054DC2B53AFE745

d32a8b86d524cb1d4ebe8c6901de3e959dfcabb0_jpeg

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
5月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
396 14
|
5月前
|
SQL 人工智能 分布式计算
ODPS十五周年实录|构建 AI 时代的大数据基础设施
本文根据 ODPS 十五周年·年度升级发布实录整理而成,演讲信息如下: 张治国:阿里云智能集团技术研究员、阿里云智能计算平台事业部 ODPS-MaxCompute 负责人 活动:【数据进化·AI 启航】ODPS 年度升级发布
253 9
|
6月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
348 0
|
7月前
|
存储 分布式计算 大数据
【赵渝强老师】阿里云大数据存储计算服务:MaxCompute
阿里云MaxCompute是快速、全托管的TB/PB级数据仓库解决方案,提供海量数据存储与计算服务。支持多种计算模型,适用于大规模离线数据分析,具备高安全性、低成本、易用性强等特点,助力企业高效处理大数据。
355 0
|
5月前
|
SQL 存储 分布式计算
【万字长文,建议收藏】《高性能ODPS SQL章法》——用古人智慧驾驭大数据战场
本文旨在帮助非专业数据研发但是有高频ODPS使用需求的同学们(如数分、算法、产品等)能够快速上手ODPS查询优化,实现高性能查数看数,避免日常工作中因SQL任务卡壳、失败等情况造成的工作产出delay甚至集群资源稳定性问题。
1277 36
【万字长文,建议收藏】《高性能ODPS SQL章法》——用古人智慧驾驭大数据战场
|
5月前
|
传感器 人工智能 监控
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
188 14
|
4月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
388 0
|
5月前
|
机器学习/深度学习 传感器 监控
吃得安心靠数据?聊聊用大数据盯紧咱们的餐桌安全
吃得安心靠数据?聊聊用大数据盯紧咱们的餐桌安全
187 1
|
5月前
|
数据采集 自动驾驶 机器人
数据喂得好,机器人才能学得快:大数据对智能机器人训练的真正影响
数据喂得好,机器人才能学得快:大数据对智能机器人训练的真正影响
433 1
|
6月前
|
机器学习/深度学习 监控 大数据
数据当“安全带”:金融市场如何用大数据玩转风险控制?
数据当“安全带”:金融市场如何用大数据玩转风险控制?
206 10