解锁云原生 AI 技能|在 Kubernetes 上构建机器学习系统

本文涉及的产品
云原生网关 MSE Higress,422元/月
函数计算FC,每月15万CU 3个月
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
简介: 本系列将利用阿里云容器服务,帮助您上手 Kubeflow Pipelines.介绍机器学习的工程复杂度,除了来自于常见的软件开发问题外,还和机器学习数据驱动的特点相关。而这就带来了其工作流程链路更长,数据版本失控,实验难以跟踪、结果难以重现,模型迭代成本巨大等一系列问题。

本系列将利用阿里云容器服务,帮助您上手 Kubeflow Pipelines.

介绍

机器学习的工程复杂度,除了来自于常见的软件开发问题外,还和机器学习数据驱动的特点相关。而这就带来了其工作流程链路更长,数据版本失控,实验难以跟踪、结果难以重现,模型迭代成本巨大等一系列问题。为了解决这些机器学习固有的问题,很多企业构建了内部机器学习平台来管理机器学习生命周期,其中最有名的是 Google 的 Tensorflow Extended, Facebook 的 FBLearner Flow, Uber 的 Michelangelo,遗憾的是这些平台都需要绑定在公司内部的基础设施之上,无法彻底开源。而这些机器学习平台的骨架就是机器学习工作流系统,它可以让数据科学家灵活定义自己的机器学习流水线,重用已有的数据处理和模型训练能力,进而更好的管理机器学习生命周期。


谈到机器学习工作流平台,Google 的工程经验非常丰富,它的 TensorFlow Extended 机器学习平台支撑了 Google 的搜索,翻译,视频等核心业务;更重要的是其对机器学习领域工程效率问题的理解深刻,Google 的 Kubeflow 团队于 2018 年底开源了 Kubeflow Pipelines(KFP),  KFP 的设计与 Google 内部机器学习平台 TensorFlow Extended 一脉相承,唯一的区别是 KFP 运行在 Kubernetes 的平台上,TFX 是运行在 Borg 之上的。

什么是 Kubeflow Pipelines

Kubeflow Pipelines 平台包括:

  • 能够运行和追踪实验的管理控制台
  • 能够执行多个机器学习步骤的工作流引擎 (Argo)
  • 用来自定义工作流的 SDK,目前只支持 Python

而 Kubeflow Pipelines 的目标在于:

  • 端到端的任务编排: 支持编排和组织复杂的机器学习工作流,该工作流可以被直接触发,定时触发,也可以由事件触发,甚至可以实现由数据的变化触发;
  • 简单的实验管理: 帮助数据科学家尝试众多的想法和框架,以及管理各种试验。并实现从实验到生产的轻松过渡;
  • 通过组件化方便重用: 通过重用 Pipelines 和组件快速创建端到端解决方案,无需每次从 0 开始的重新构建。

在阿里云上运行 Kubeflow Pipelines

看到 Kubeflow Piplines 的能力,大家是不是都摩拳擦掌,想一睹为快?但是目前国内想使用 Kubeflow Pipeline 有两个挑战:

  1. Pipelines 需要通过 Kubeflow 部署;而 Kubeflow 默认组件过多,同时通过 Ksonnet 部署 Kubeflow 也是很复杂的事情;
  2. Pipelines 本身和谷歌云平台有深度耦合,无法运行在其他云平台上或者裸金属服务器的环境。

为了方便国内的用户安装 Kubeflow Pipelines,阿里云容器服务团队提供了基于 Kustomize 的 Kubeflow Pipelines 部署方案。和普通的 Kubeflow 基础服务不同,Kubeflow Pipelines 需要依赖于 mysql 和 minio 这些有状态服务,也就需要考虑如何持久化和备份数据。在本例子中,我们借助阿里云 SSD 云盘作为数据持久化的方案,分别自动的为 mysql 和 minio 创建 SSD 云盘。
您可以在阿里云上尝试一下单独部署最新版本 Kubeflow Pipelines。

前提条件

在 Linux 和 Mac OS 环境,可以执行

opsys=linux  # or darwin, or windows
curl -s https://api.github.com/repos/kubernetes-sigs/kustomize/releases/latest |\
  grep browser_download |\
  grep $opsys |\
  cut -d '"' -f 4 |\
  xargs curl -O -L
mv kustomize_*_${opsys}_amd64 /usr/bin/kustomize
chmod u+x /usr/bin/kustomize

在 Windows 环境,可以下载 kustomize_2.0.3_windows_amd64.exe

  • 在阿里云容器服务创建 Kubernetes 集群, 可以参考 文档

部署过程

  1. 通过 ssh 访问 Kubernetes 集群,具体方式可以参考文档
  2. 下载源代码
yum install -y git
git clone --recursive https://github.com/aliyunContainerService/kubeflow-aliyun
  1. 安全配置

3.1 配置 TLS 证书。如果没有 TLS 证书,可以通过下列命令生成

yum install -y openssl
domain="pipelines.kubeflow.org"
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout kubeflow-aliyun/overlays/ack-auto-clouddisk/tls.key -out kubeflow-aliyun/overlays/ack-auto-clouddisk/tls.crt -subj "/CN=$domain/O=$domain"

如果您有TLS证书,请分别将私钥和证书保存到kubeflow-aliyun/overlays/ack-auto-clouddisk/tls.keykubeflow-aliyun/overlays/ack-auto-clouddisk/tls.crt

3.2 配置 admin 的登录密码

yum install -y httpd-tools
htpasswd -c kubeflow-aliyun/overlays/ack-auto-clouddisk/auth admin
New password:
Re-type new password:
Adding password for user admin
  1. 首先利用 kustomize 生成部署 yaml
cd kubeflow-aliyun/
kustomize build overlays/ack-auto-clouddisk > /tmp/ack-auto-clouddisk.yaml
  1. 查看所在的 Kubernetes 集群节点所在的地域和可用区,并且根据其所在节点替换可用区,假设您的集群所在可用区为 cn-hangzhou-g, 可以执行下列命令
sed -i.bak 's/regionid: cn-beijing/regionid: cn-hangzhou/g' \
    /tmp/ack-auto-clouddisk.yaml
sed -i.bak 's/zoneid: cn-beijing-e/zoneid: cn-hangzhou-g/g' \
    /tmp/ack-auto-clouddisk.yaml

建议您检查一下 /tmp/ack-auto-clouddisk.yaml 修改是否已经设置

  1. 将容器镜像地址由 gcr.io 替换为 registry.aliyuncs.com
sed -i.bak 's/gcr.io/registry.aliyuncs.com/g' \
    /tmp/ack-auto-clouddisk.yaml

建议您检查一下 /tmp/ack-auto-clouddisk.yaml 修改是否已经设置

  1. 调整使用磁盘空间大小, 比如需要调整磁盘空间为 200G
sed -i.bak 's/storage: 100Gi/storage: 200Gi/g' \
    /tmp/ack-auto-clouddisk.yaml
  1. 验证 pipelines 的 yaml 文件
kubectl create --validate=true --dry-run=true -f /tmp/ack-auto-clouddisk.yaml
  1. 利用 kubectl 部署 pipelines
kubectl create -f /tmp/ack-auto-clouddisk.yaml
  1. 查看访问 pipelines 的方式,我们通过 ingress 暴露 pipelines 服务,在本例子中,访问 IP 是 112.124.193.271。而 Pipelines 管理控制台的链接是: [https://112.124.193.271/pipeline/]()
kubectl get ing -n kubeflow
NAME             HOSTS   ADDRESS           PORTS     AGE
ml-pipeline-ui   *       112.124.193.271   80, 443   11m
  1. 访问 pipelines 管理控制台

如果使用自签发证书,会提示此链接非私人链接,请点击显示详细信息, 并点击访问此网站。


请输入步骤 2.2 中的用户名 admin 和设定的密码。


这时就可以使用 pipelines 管理和运行训练任务了。

Q&A

  1. 为什么这里要使用阿里云的 SSD 云盘?

这是由于阿里云的 SSD 云盘可以设置定期的自动备份,保证 pipelines 中的元数据不会丢失。

  1. 如何进行云盘备份?

如果您想备份云盘的内容,可以为云盘 手动创建快照 或者 为硬盘设置自动快照策略 按时自动创建快照。

  1. 如何清理 Kubeflow Piplines 部署?

这里的清理工作分为两个部分:

  • 删除 Kubeflow Pipelines 的组件
kubectl delete -f /tmp/ack-auto-clouddisk.yaml
  • 通过释放云盘分别释放 mysql 和 minio 存储对应的两个云盘
  1. 如何使用现有云盘作为数据库存储,而避免自动创建云盘?

请参考文档

总结

本文为您初步介绍了 Kubeflow Pipelines 的背景和其所要解决的问题,以及如何在阿里云上通过 Kustomize 快速构建一套服务于机器学习的 Kubeflow Pipelines, 后续我们会分享如何利用 Kubeflow Pipelines 开发一个完整的机器学习流程。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
8天前
|
Kubernetes Cloud Native Docker
云原生时代的容器化实践:Docker和Kubernetes入门
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术成为企业提升敏捷性和效率的关键。本篇文章将引导读者了解如何利用Docker进行容器化打包及部署,以及Kubernetes集群管理的基础操作,帮助初学者快速入门云原生的世界。通过实际案例分析,我们将深入探讨这些技术在现代IT架构中的应用与影响。
33 2
|
8天前
|
Kubernetes 监控 负载均衡
深入云原生:Kubernetes 集群部署与管理实践
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其弹性、可扩展性成为企业IT架构的首选。本文将引导你了解如何部署和管理一个Kubernetes集群,包括环境准备、安装步骤和日常维护技巧。我们将通过实际代码示例,探索云原生世界的秘密,并分享如何高效运用这一技术以适应快速变化的业务需求。
32 1
|
17天前
|
人工智能 运维 NoSQL
云栖大会|多模+一体化,构建更高效的AI应用
在2024年云栖大会「NoSQL数据库」专场,多位知名企业和阿里云瑶池数据库团队的技术专家,共同分享了阿里云Lindorm、Tair、MongoDB和MyBase的最新进展与实践。Tair推出Serverless KV服务,解决性能瓶颈和运维难题;Lindorm助力AI和具身智能时代的多模数据处理;MongoDB云原生化提升开发效率;MyBase One打破云边界,提供云边端一体化服务。这些技术进展和最佳实践,展示了阿里云在NoSQL数据库领域的创新能力和广泛应用前景。
|
12天前
|
运维 Kubernetes Cloud Native
Kubernetes云原生架构深度解析与实践指南####
本文深入探讨了Kubernetes作为领先的云原生应用编排平台,其设计理念、核心组件及高级特性。通过剖析Kubernetes的工作原理,结合具体案例分析,为读者呈现如何在实际项目中高效部署、管理和扩展容器化应用的策略与技巧。文章还涵盖了服务发现、负载均衡、配置管理、自动化伸缩等关键议题,旨在帮助开发者和运维人员掌握利用Kubernetes构建健壮、可伸缩的云原生生态系统的能力。 ####
|
13天前
|
存储 运维 Kubernetes
云原生之旅:Kubernetes的弹性与可扩展性探索
【10月更文挑战第32天】在云计算的浪潮中,云原生技术以其独特的魅力成为开发者的新宠。本文将深入探讨Kubernetes如何通过其弹性和可扩展性,助力应用在复杂环境中稳健运行。我们将从基础架构出发,逐步揭示Kubernetes集群管理、服务发现、存储机制及自动扩缩容等核心功能,旨在为读者呈现一个全景式的云原生平台视图。
26 1
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI驱动的个性化学习平台构建###
【10月更文挑战第29天】 本文将深入探讨如何利用人工智能技术,特别是机器学习与大数据分析,构建一个能够提供高度个性化学习体验的在线平台。我们将分析当前在线教育的挑战,提出通过智能算法实现内容定制、学习路径优化及实时反馈机制的技术方案,以期为不同背景和需求的学习者创造更加高效、互动的学习环境。 ###
38 3
|
7天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
23 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
28天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
56 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练

相关产品

  • 容器服务Kubernetes版
  • 推荐镜像

    更多