7月24日晚Spark社区直播:【Apache Spark 基于 Apache Arrow 的列式存储优化】

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: Apache Arrow 是一个基于内存的列式存储标准,旨在解决数据交换和传输过程中,序列化和反序列化带来的开销。目前,Apache Spark 社区的一些重要优化都在围绕 Apache Arrow 展开,本次分享会介绍 Apache Arrow 并分析通过 Arrow 将给 Spark 带来哪些特性。

直播间直达链接:(回看链接)

https://tianchi.aliyun.com/course/live?spm=5176.12282027.0.0.5622379ccY33Rf&liveId=41070

时间

7月24日19:00

主讲人:

诚历,阿里巴巴计算平台事业部 EMR 技术专家,Apache Sentry PMC,Apache Commons Committer,目前从事开源大数据存储和优化方面的工作。

简介:

Apache Arrow 是一个基于内存的列式存储标准,旨在解决数据交换和传输过程中,序列化和反序列化带来的开销。目前,Apache Spark 社区的一些重要优化都在围绕 Apache Arrow 展开,本次分享会介绍 Apache Arrow 并分析通过 Arrow 将给 Spark 带来哪些特性。
_Apache_Spark_Apache_Arrow____spark_

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
19天前
|
消息中间件 监控 大数据
优化Apache Kafka性能:最佳实践与调优策略
【10月更文挑战第24天】作为一名已经对Apache Kafka有所了解并有实际使用经验的开发者,我深知在大数据处理和实时数据流传输中,Kafka的重要性不言而喻。然而,在面对日益增长的数据量和业务需求时,如何保证系统的高性能和稳定性成为了摆在我们面前的一个挑战。本文将从我的个人视角出发,分享一些关于如何通过合理的配置和调优来提高Kafka性能的经验和建议。
50 4
|
4月前
|
消息中间件 人工智能 Apache
Apache RocketMQ 中文社区全新升级!
RocketMQ 中文社区升级发布只是起点,我们将持续优化体验细节,推出更多功能和服务,更重要的是提供更多全面、深度、高质量的内容。
573 17
|
1月前
|
SQL 分布式计算 NoSQL
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
28 1
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
|
28天前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
34 1
|
1月前
|
存储 大数据 分布式数据库
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
33 1
|
1月前
|
SQL 存储 监控
大数据-161 Apache Kylin 构建Cube 按照日期、区域、产品、渠道 与 Cube 优化
大数据-161 Apache Kylin 构建Cube 按照日期、区域、产品、渠道 与 Cube 优化
49 0
|
3月前
|
消息中间件 人工智能 监控
|
3月前
|
监控 Apache
Apache 工作模式的区别及优化
【8月更文挑战第22天】Apache 工作模式的区别及优化
74 0
|
3月前
|
分布式计算 Hadoop 大数据
大数据处理框架在零售业的应用:Apache Hadoop与Apache Spark
【8月更文挑战第20天】Apache Hadoop和Apache Spark为处理海量零售户数据提供了强大的支持
63 0
|
3月前
|
分布式计算 Serverless 数据处理
EMR Serverless Spark 实践教程 | 通过 Apache Airflow 使用 Livy Operator 提交任务
Apache Airflow 是一个强大的工作流程自动化和调度工具,它允许开发者编排、计划和监控数据管道的执行。EMR Serverless Spark 为处理大规模数据处理任务提供了一个无服务器计算环境。本文为您介绍如何通过 Apache Airflow 的 Livy Operator 实现自动化地向 EMR Serverless Spark 提交任务,以实现任务调度和执行的自动化,帮助您更有效地管理数据处理任务。
203 0

推荐镜像

更多