分布式关系型数据库服务 DRDS 优化分析型只读实例基于 CBO 进行 JOIN 重排及物理执行策略

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 信息摘要: DRDS 分析型只读实例优化基于 CBO 进行 Join 重排以及全表扫描增加并行加速能力,同时修复20余项内核问题适用客户: 数据库使用者 / 分布式数据库使用者 / 分库分表 / 开发者 / 互联网企业 / 金融保险行业 / 新零售行业版本/规格功能: 新功能优化分析型只读实例...

信息摘要: DRDS 分析型只读实例优化基于 CBO 进行 Join 重排以及全表扫描增加并行加速能力,同时修复20余项内核问题
适用客户: 数据库使用者 / 分布式数据库使用者 / 分库分表 / 开发者 / 互联网企业 / 金融保险行业 / 新零售行业
版本/规格功能: 新功能

  • 优化分析型只读实例基于CBO进行JOIN重排及物理执行策略
  • 优化分析型只读实例全表扫描速度
  • 优化 INSERT / REPLACE / UPDATE / DELETE 语句的性能

问题修复

  • 修复并发KILL命令导致用户无法链接DRDS的问题
  • 修复原表自增主键存在0值,同步到DRDS报错问题
  • 修复多表UPDATE报错
  • 修复用户存在视图时,SHOW TABLES 报错问题
  • 修复表名过长管控无法显示以及无法删除的问题
  • 修复多库权限的账号无法同时使用Navicat的问题
  • 修复COMPRESS协议下用户查询的结果集过大时卡死的问题
  • 修复AVG函数参数为TIMESTAMP类型时的查询报错
  • 修复ROUND函数返回类型问题
  • 修复SHOW NODE读写次数超过整型上限问题
  • 修复部分DDL以及语句解析报错问题
  • 修复建带库名的广播表报错的问题
  • 修复特殊场景下物理SQL优化导致分片计算异常的问题
  • 修复ADMIN账户SHOW GRANTS无法看到全部用户权限的问题
  • 修复多列IN只有一列有值时的报错问题
  • 修复单表LOCK TABLES导致的系统异常
  • 修复INSERT中拆分键有函数,EXPLAIN报错问题*
    产品文档: https://help.aliyun.com/document_detail/49279.html?spm=a2c4g.11186623.6.546.8da8c28b4ty9do#h2-v5-3-11-15622313-2019-07-043
相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
目录
相关文章
|
21天前
|
程序员
后端|一个分布式锁「失效」的案例分析
小猿最近很苦恼:明明加了分布式锁,为什么并发还是会出问题呢?
30 2
|
1月前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
1月前
|
存储 缓存 数据处理
深度解析:Hologres分布式存储引擎设计原理及其优化策略
【10月更文挑战第9天】在大数据时代,数据的规模和复杂性不断增加,这对数据库系统提出了更高的要求。传统的单机数据库难以应对海量数据处理的需求,而分布式数据库通过水平扩展提供了更好的解决方案。阿里云推出的Hologres是一个实时交互式分析服务,它结合了OLAP(在线分析处理)与OLTP(在线事务处理)的优势,能够在大规模数据集上提供低延迟的数据查询能力。本文将深入探讨Hologres分布式存储引擎的设计原理,并介绍一些关键的优化策略。
95 0
|
3月前
|
存储 缓存 负载均衡
【PolarDB-X 技术揭秘】Lizard B+tree:揭秘分布式数据库索引优化的终极奥秘!
【8月更文挑战第25天】PolarDB-X是阿里云的一款分布式数据库产品,其核心组件Lizard B+tree针对分布式环境优化,解决了传统B+tree面临的数据分片与跨节点查询等问题。Lizard B+tree通过一致性哈希实现数据分片,确保分布式一致性;智能分区实现了负载均衡;高效的搜索算法与缓存机制降低了查询延迟;副本机制确保了系统的高可用性。此外,PolarDB-X通过自适应分支因子、缓存优化、异步写入、数据压缩和智能分片等策略进一步提升了Lizard B+tree的性能,使其能够在分布式环境下提供高性能的索引服务。这些优化不仅提高了查询速度,还确保了系统的稳定性和可靠性。
90 5
|
3月前
|
机器学习/深度学习 人工智能 负载均衡
【AI大模型】分布式训练:深入探索与实践优化
在人工智能的浩瀚宇宙中,AI大模型以其惊人的性能和广泛的应用前景,正引领着技术创新的浪潮。然而,随着模型参数的指数级增长,传统的单机训练方式已难以满足需求。分布式训练作为应对这一挑战的关键技术,正逐渐成为AI研发中的标配。
199 5
|
3月前
|
机器学习/深度学习 资源调度 PyTorch
面向大规模分布式训练的资源调度与优化策略
【8月更文第15天】随着深度学习模型的复杂度不断提高,对计算资源的需求也日益增长。为了加速训练过程并降低运行成本,高效的资源调度和优化策略变得至关重要。本文将探讨在大规模分布式训练场景下如何有效地进行资源调度,并通过具体的代码示例来展示这些策略的实际应用。
379 1
|
3月前
|
运维 安全
基于simulink的分布式发电系统自动重合闸的建模与仿真分析
本课题研究配电系统中分布式电源接入后的自动重合闸问题,着重分析非同期重合闸带来的冲击电流及其影响。通过Simulink搭建模型,仿真不同位置及容量的分布式电源对冲击电流的影响,并对比突发性和永久性故障情况。利用MATLAB2022a进行参数设置与仿真运行,结果显示非同期重合闸对系统安全构成挑战,需通过优化参数提升系统性能。
|
3月前
|
C# UED 定位技术
WPF控件大全:初学者必读,掌握控件使用技巧,让你的应用程序更上一层楼!
【8月更文挑战第31天】在WPF应用程序开发中,控件是实现用户界面交互的关键元素。WPF提供了丰富的控件库,包括基础控件(如`Button`、`TextBox`)、布局控件(如`StackPanel`、`Grid`)、数据绑定控件(如`ListBox`、`DataGrid`)等。本文将介绍这些控件的基本分类及使用技巧,并通过示例代码展示如何在项目中应用。合理选择控件并利用布局控件和数据绑定功能,可以提升用户体验和程序性能。
64 0
|
3月前
|
自然语言处理 Java
自研分布式训练框架EPL问题之实现显存的极致优化如何解决
自研分布式训练框架EPL问题之实现显存的极致优化如何解决
|
3月前
|
SQL 存储 分布式计算
神龙大数据加速引擎MRACC问题之RDMA技术帮助大数据分布式计算优化如何解决
神龙大数据加速引擎MRACC问题之RDMA技术帮助大数据分布式计算优化如何解决
56 0