突破Java面试(49)-分库分表之后全局id的生成

简介: 0 Github1 面试题分库分表之后,id主键如何处理?2 考点分析其实这是分库分表之后你必然要面对的一个问题,就是id咋生成?要是分成多个表之后,每个表都是从1开始累加,那肯定不对啊,需要一个全局唯一的id来支持!下面来看看有哪些可行方案~3 数据库自增id分库分表的id主键...

分库分表后每个表还都从1开始累加肯定有问题,需要全局唯一id的生成器,下面详解各种方案优缺点。

1 数据库自增id

提供一个专门用于生成主键的库,这样服务每次接收请求都

  1. 先往单点库的某表里插入一条没啥业务含义的数据
  2. 然后获取一个数据库自增id
  3. 取得id后,再写入对应的分库分表

优点

简单,是人都会

缺点

因为是单库生成自增id,所以若是高并发场景,就会有性能瓶颈。
若硬是要改进,那就专门开个服务:

  • 该服务每次就拿到当前id最大值
  • 然后自己递增几个id,一次性返回一批id
  • 然后再把当前最大id值修改成递增几个id之后的一个值

但无论怎么说都只是基于单库。

适用场景

分库分表就俩原因

  1. 单库的并发负载过高
  2. 单库的数据量过大

除非并发不高,但数据量太大导致的分库分表扩容,可用该方案,因为可能每秒最高并发最多就几百,那么就走单独的一个库和表生成自增主键即可。
并发很低,几百/s,但是数据量大,几十亿的数据,所以需要靠分库分表来存放海量数据。

2 UUID

优点

本地生成,无需数据库依赖

缺点

  • UUID过长,作为主键性能太差
  • UUID 无序,导致 B+ 树索引写时有着过多的随机写操作
  • 写时不能产生有顺序的 append 操作,而需要 insert,将会读取整个 B+ 树节点到内存,在插入这条记录后会将整个节点写回磁盘,这种操作在记录占用空间比较大的情况下,性能下降明显

适用场景

若你是要随机生成文件名、编号之类的,可以用UUID,但是作为主键是不能的!

UUID.randomUUID().toString().replace(“-”, “”) -> sfsdf23423rr234sfdaf

3 系统时间

获取当前时间即可。但问题是高并发时,会有重复,这肯定不合适啊,而且还可能修改系统时间呢!

适用场景

若用该方案,一般将当前时间跟很多其他的业务字段拼接起来,作为一个id。若业务上你可以接受,那也行。

你可以将别的业务字段值跟当前时间拼接起来,组成一个全局唯一的编号,比如订单编号:
时间戳 + 用户id + 业务含义编码

4 snowflake算法(主流方案)

twitter开源的分布式id生成算法,把一个64位的long型的id,1个bit是不用的,用其中的41 bit作为毫秒数,用10 bit作为工作机器id,12 bit作为序列号

  • 1 bit:不用
    因为二进制里第一个bit为如果是1,那么都是负数,但是我们生成的id都是正数,所以第一个bit统一0
  • 41 bit:时间戳,单位ms
  1. bit可以表示的数字多达2^41 - 1,也就是可以标识2 ^ 41 - 1个毫秒值,换算成年就是表示69年
  • 10 bit:记录工作机器id
    代表该服务最多可以部署在2^10台机器上哪,也就是1024台机器

但是10 bit里5个bit代表机房id,5个bit代表机器id。意思就是最多代表2 ^ 5个机房(32个机房),每个机房里可以代表2 ^ 5个机器(32台机器)。

  • 12 bit:记录同一个毫秒内产生的不同id
  1. bit可以代表的最大正整数是2 ^ 12 - 1 = 4096

也就是说可以用这个12bit代表的数字来区分同一个毫秒内的4096个不同的id

64位的long型的id,64位的long => 二进制

0 | 0001100 10100010 10111110 10001001 01011100 00 | 10001 | 1 1001 | 0000 00000000

2018-01-01 10:00:00 -> 做了一些计算,再换算成一个二进制,41bit来放 ->

0001100 10100010 10111110 10001001 01011100 00

机房id,17 -> 换算成一个二进制 ->

10001

机器id,25 -> 换算成一个二进制 ->

11001

snowflake算法服务,会判断一下,当前这个请求是否是,机房17的机器25,在2175/11/7 12:12:14时间点发送过来的第一个请求,如果是第一个请求

假设,在2175/11/7 12:12:14时间里,机房17的机器25,发送了第二条消息,snowflake算法服务,会发现说机房17的机器25,在2175/11/7 12:12:14时间里,在这一毫秒,之前已经生成过一个id了,此时如果你同一个机房,同一个机器,在同一个毫秒内,再次要求生成一个id,此时我只能把加1

0 | 0001100 10100010 10111110 10001001 01011100 00 | 10001 | 1 1001 | 0000 00000001

比如我们来观察上面的那个,就是一个典型的二进制的64位的id,换算成10进制就是910499571847892992。

public class IdWorker {

    private long workerId;
    private long datacenterId;
    private long sequence;

    public IdWorker(long workerId, long datacenterId, long sequence) {
        // sanity check for workerId
        // 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(
                    String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(
                    String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        System.out.printf(
                "worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
                timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);

        this.workerId = workerId;
        this.datacenterId = datacenterId;
        this.sequence = sequence;
    }

    private long twepoch = 1288834974657L;

    private long workerIdBits = 5L;
    private long datacenterIdBits = 5L;

    // 这个是二进制运算,就是 5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
    private long maxWorkerId = -1L ^ (-1L << workerIdBits);

    // 这个是一个意思,就是 5 bit最多只能有31个数字,机房id最多只能是32以内
    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    private long sequenceBits = 12L;

    private long workerIdShift = sequenceBits;
    private long datacenterIdShift = sequenceBits + workerIdBits;
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    private long sequenceMask = -1L ^ (-1L << sequenceBits);

    private long lastTimestamp = -1L;

    public long getWorkerId() {
        return workerId;
    }

    public long getDatacenterId() {
        return datacenterId;
    }

    public long getTimestamp() {
        return System.currentTimeMillis();
    }

    public synchronized long nextId() {
        // 这儿就是获取当前时间戳,单位是毫秒
        long timestamp = timeGen();

        if (timestamp < lastTimestamp) {
            System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
            throw new RuntimeException(String.format(
                    "Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        if (lastTimestamp == timestamp) {
            // 这个意思是说一个毫秒内最多只能有4096个数字
            // 无论你传递多少进来,这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0;
        }

        // 这儿记录一下最近一次生成id的时间戳,单位是毫秒
        lastTimestamp = timestamp;

        // 这儿就是将时间戳左移,放到 41 bit那儿;
        // 将机房 id左移放到 5 bit那儿;
        // 将机器id左移放到5 bit那儿;将序号放最后12 bit;
        // 最后拼接起来成一个 64 bit的二进制数字,转换成 10 进制就是个 long 型
        return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift)
                | (workerId << workerIdShift) | sequence;
    }

    private long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    private long timeGen() {
        return System.currentTimeMillis();
    }

    // ---------------测试---------------
    public static void main(String[] args) {
        IdWorker worker = new IdWorker(1, 1, 1);
        for (int i = 0; i < 30; i++) {
            System.out.println(worker.nextId());
        }
    }

}
  • 41 bit,就是当前毫秒单位的一个时间戳
  • 然后5 bit是你传递进来的一个机房id(但是最大只能是32以内)
  • 5 bit是你传递进来的机器id(但是最大只能是32以内)
  • 剩下的那个10 bit序列号,就是如果跟你上次生成id的时间还在一个毫秒内,那么会把顺序给你累加,最多在4096个序号以内

所以你自己利用这个工具类,自己搞一个服务,然后对每个机房的每个机器都初始化这么一个东西,刚开始这个机房的这个机器的序号就是0。
然后每次接收到一个请求,说这个机房的这个机器要生成一个id,你就找到对应的Worker,生成。

这个算法生成的时候,会把当前毫秒放到41 bit中,然后5 bit是机房id,5 bit是机器id,接着就是判断上一次生成id的时间如果跟这次不一样,序号就自动从0开始;要是上次的时间跟现在还是在一个毫秒内,他就把seq累加1,就是自动生成一个毫秒的不同的序号。

该算法可以确保每个机房每个机器每一毫秒,最多生成4096个不重复的id。

利用这个snowflake算法,你可以开发自己公司的服务,甚至对于机房id和机器id,反正给你预留了5 bit + 5 bit,你换成别的有业务含义的东西也可以的。

参考

  • 《Java工程师面试突击第1季-中华石杉老师》
目录
相关文章
|
1月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
77 2
|
28天前
|
Java 程序员
Java社招面试题:& 和 && 的区别,HR的套路险些让我翻车!
小米,29岁程序员,分享了一次面试经历,详细解析了Java中&和&&的区别及应用场景,展示了扎实的基础知识和良好的应变能力,最终成功获得Offer。
67 14
|
1月前
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
|
1月前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
1月前
|
存储 缓存 Oracle
Java I/O流面试之道
NIO的出现在于提高IO的速度,它相比传统的输入/输出流速度更快。NIO通过管道Channel和缓冲器Buffer来处理数据,可以把管道当成一个矿藏,缓冲器就是矿藏里的卡车。程序通过管道里的缓冲器进行数据交互,而不直接处理数据。程序要么从缓冲器获取数据,要么输入数据到缓冲器。
Java I/O流面试之道
|
1月前
|
Java 编译器 程序员
Java面试高频题:用最优解法算出2乘以8!
本文探讨了面试中一个看似简单的数学问题——如何高效计算2×8。从直接使用乘法、位运算优化、编译器优化、加法实现到大整数场景下的处理,全面解析了不同方法的原理和适用场景,帮助读者深入理解计算效率优化的重要性。
36 6
|
1月前
|
SQL 存储 Oracle
大厂面试高频:聊下分库分表与读写分离的实现原理
本文详解了分库分表和读写分离的原理与实现,帮助解决大数据量下的性能瓶颈问题,大厂面试高频,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:聊下分库分表与读写分离的实现原理
|
1月前
|
存储 缓存 Java
大厂面试必看!Java基本数据类型和包装类的那些坑
本文介绍了Java中的基本数据类型和包装类,包括整数类型、浮点数类型、字符类型和布尔类型。详细讲解了每种类型的特性和应用场景,并探讨了包装类的引入原因、装箱与拆箱机制以及缓存机制。最后总结了面试中常见的相关考点,帮助读者更好地理解和应对面试中的问题。
73 4
|
1月前
|
存储 Java 程序员
Java基础的灵魂——Object类方法详解(社招面试不踩坑)
本文介绍了Java中`Object`类的几个重要方法,包括`toString`、`equals`、`hashCode`、`finalize`、`clone`、`getClass`、`notify`和`wait`。这些方法是面试中的常考点,掌握它们有助于理解Java对象的行为和实现多线程编程。作者通过具体示例和应用场景,详细解析了每个方法的作用和重写技巧,帮助读者更好地应对面试和技术开发。
135 4
|
3天前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者