突破Java面试(25)-Redis集群模式的原理

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 1 面试题Redis集群模式的工作原理说一下?在集群模式下,key是如何寻址的?寻址都有哪些算法?了解一致性hash吗?2 考点分析Redis不断在发展-Redis cluster集群模式,可以做到在多台机器上,部署多个实例,每个实例存储一部分的数据,同时每个实例可以带上Redis从实例,自动确保说,如果Redis主实例挂了,会自动切换到redis从实例顶上来。

1 面试题

Redis集群模式的工作原理说一下?在集群模式下,key是如何寻址的?寻址都有哪些算法?了解一致性hash吗?

2 考点分析

Redis不断在发展-Redis cluster集群模式,可以做到在多台机器上,部署多个实例,每个实例存储一部分的数据,同时每个实例可以带上Redis从实例,自动确保说,如果Redis主实例挂了,会自动切换到redis从实例顶上来。

现在新版本,大家都是用Redis cluster的,也就是原生支持的集群模式,那么面试官肯定会就redis cluster对你来个几连炮。要是你没用过redis cluster,正常,以前很多人用codis之类的客户端来支持集群,但是起码你得研究一下redis cluster

3 Redis如何在保持读写分离+高可用的架构下,还能横向扩容支撑1T+海量数据

  • redis单master架构的容量的瓶颈问题
  • redis如何通过master横向扩容支撑1T+数据量

3 数据分布算法:hash+一致性hash+redis cluster的hash slot

讲解分布式数据存储的核心算法,数据分布的算法

hash算法 -> 一致性hash算法(memcached) -> redis cluster,hash slot算法

用不同的算法,就决定了在多个master节点的时候,数据如何分布到这些节点上去,解决这个问题

4 Redis cluster

  • 自动将数据分片,每个master上放一部分数据
  • 提供内置的高可用支持,部分master不可用时,还可继续工作

在Redis cluster架构下,每个Redis要开放两个端口,比如一个是6379,另外一个就是加10000的端口号,比如16379

16379端口用于节点间通信,也就是cluster bus集群总线

cluster bus的通信,用来故障检测,配置更新,故障转移授权

cluster bus用了另外一种二进制的协议 - gossip,主要用于节点间高效的数据交换,占用更少的网络带宽和处理时间

  • 最老土的hash算法和弊端(大量缓存重建)

3、一致性hash算法(自动缓存迁移)+虚拟节点(自动负载均衡)

  • 一致性hash算法的讲解和优点
  • 一致性hash算法的虚拟节点实现负载均衡

4、redis cluster的hash slot算法

redis cluster有固定的16384个hash slot,对每个key计算CRC16值,然后对16384取模,可以获取key对应的hash slot

redis cluster中每个master都会持有部分slot,比如有3个master,那么可能每个master持有5000多个hash slot

hash slot让node的增加和移除很简单,增加一个master,就将其他master的hash slot移动部分过去,减少一个master,就将它的hash slot移动到其他master上去

移动hash slot的成本是非常低的

客户端的api,可以对指定的数据,让他们走同一个hash slot,通过hash tag来实现

5 节点间的内部通信机制

5.1 基础通信原理

用于维护集群的元数据

5.1.1 集中式

  • 集中式的集群元数据存储和维护

将集群元数据(节点信息,故障等)集中存储在某个节点

  • 优点
    元数据的更新和读取,时效性好,一旦元数据出现变更,立即更新到集中式的存储中,其他节点读取时立即就可感知
  • 缺点
    所有的元数据的跟新压力全部集中在一个地方,可能会导致元数据的存储有压力

Redis cluster节点间采取的另一种称为gossip的协议

互相之间不断通信,保持整个集群所有节点的数据是完整的

gossip:好处在于,元数据的更新比较分散,不是集中在一个地方,更新请求会陆陆续续,打到所有节点上去更新,有一定的延时,降低了压力; 缺点,元数据更新有延时,可能导致集群的一些操作会有一些滞后

我们刚才做reshard,去做另外一个操作,会发现说,configuration error,达成一致

(2)10000端口

每个节点都有一个专门用于节点间通信的端口,就是自己提供服务的端口号+10000,比如7001,那么用于节点间通信的就是17001端口

每隔节点每隔一段时间都会往另外几个节点发送ping消息,同时其他几点接收到ping之后返回pong

(3)交换的信息

故障信息,节点的增加和移除,hash slot信息,等等

5.1.2 gossip协议

协议包含多种消息

meet

某节点发送meet给新加入的节点,让新节点加入集群,然后新节点就会开始与其他节点通信

redis-trib.rb add-node

其实内部就是发送了一个gossip meet消息给新节点,通知该节点加入集群

ping

每个节点都会频繁给其他节点发ping,其中包含自己的状态还有自己维护的集群元数据,互相通过ping交换元数据

ping很频繁,而且要携带一些元数据,可能会加重网络的负担

每个节点每s会执行10次ping,每次会选择5个最久没有通信的其他节点。当然如果发现某个节点通信延时达到了

cluster_node_timeout / 2

那么立即发送ping,避免数据交换延时过长,落后的时间太长了。比如说,两节点之间已经10分钟没有交换数据,那么整个集群处于严重的元数据不一致的情况,就会有问题。所以cluster_node_timeout可以调节,如果调节比较大,那么会降低发送频率

每次ping,一个是带上自己节点的信息,还有就是带上1/10其他节点的信息,发送出去,进行数据交换。至少包含3个其他节点的信息,最多包含总节点-2个其他节点的信息

pong

返回ping和meet,包含自己的状态和其他信息,也可用于信息广播和更新

fail

某个节点判断另一个节点fail后,就发送fail给其他节点,通知其他节点,指定的节点宕机啦!

6 面向集群的Jedis内部实现原理

开发Jedis,Redis的Java客户端

jedis cluster api与redis cluster集群交互的一些基本原理

6.1 基于重定向的客户端

redis-cli -c,自动重定向

6.1.1 请求重定向

客户端可能会挑选任意一个Redis实例去发送命令,每个实例接收到命令,都会计算key对应的hash slot

若在本地就在本地处理,否则返回moved给客户端,让客户端重定向

cluster keyslot mykey

可查看一个key对应的hash slot是什么

用redis-cli的时候,可加入-c参数,支持自动的请求重定向,redis-cli接收到moved之后,会自动重定向到对应的节点执行命令

6.1.2 计算hash slot

计算hash slot的算法,就是根据key计算CRC16值,然后对16384取模,拿到对应的hash slot

用hash tag可以手动指定key对应的slot,同一个hash tag下的key,都会在一个hash slot中,比如set mykey1:{100}和set mykey2:{100}

6.1.3 hash slot查找

节点间通过gossip协议数据交换,就知道每个hash slot在哪个节点上

6.2 smart jedis

6.2.1 什么是smart jedis

基于重定向的客户端,很消耗网络IO,因为大部分情况下,可能都会出现一次请求重定向,才能找到正确的节点

所以大部分的客户端,比如java redis客户端,就是jedis,都是smart的

本地维护一份hashslot -> node的映射表,缓存,大部分情况下,直接走本地缓存就可以找到hashslot -> node,不需要通过节点进行moved重定向

6.2.2 JedisCluster的工作原理

在JedisCluster初始化的时候,就会随机选择一个node,初始化hashslot -> node映射表,同时为每个节点创建一个JedisPool连接池

每次基于JedisCluster执行操作,首先JedisCluster都会在本地计算key的hashslot,然后在本地映射表找到对应的节点

如果那个node正好还是持有那个hashslot,那么就ok; 如果说进行了reshard这样的操作,可能hashslot已经不在那个node上了,就会返回moved

如果JedisCluter API发现对应的节点返回moved,那么利用该节点的元数据,更新本地的hashslot -> node映射表缓存

重复上面几个步骤,直到找到对应的节点,如果重试超过5次,那么就报错,JedisClusterMaxRedirectionException

jedis老版本,可能会出现在集群某个节点故障还没完成自动切换恢复时,频繁更新hash slot,频繁ping节点检查活跃,导致大量网络IO开销

jedis最新版本,对于这些过度的hash slot更新和ping,都进行了优化,避免了类似问题

6.2.3 hashslot迁移和ask重定向

如果hash slot正在迁移,那么会返回ask重定向给jedis

jedis接收到ask重定向之后,会重新定位到目标节点去执行,但是因为ask发生在hash slot迁移过程中,所以JedisCluster API收到ask是不会更新hashslot本地缓存

已经可以确定说,hashslot已经迁移完了,moved是会更新本地hashslot->node映射表缓存的

7 高可用性与主备切换原理

原理,几乎跟哨兵类似

7.1 判断节点宕机

若一个节点认为另外一个节点宕机,即pfail - 主观宕机

若多个节点都认为另外一个节点宕机,即fail - 客观宕机

跟哨兵的原理几乎一样,sdown - odown

cluster-node-timeout内,某个节点一直没有返回pong,那么就被认为pfail

若一个节点认为某个节点pfail,那么会在gossip ping消息中,ping给其他节点,若超过半数的节点都认为pfail,那么就会变成fail

7.2 从节点过滤

对宕机的master node,从其所有的slave node中,选择一个切换成master node

检查每个slave node与master node断开连接的时间,如果超过了

cluster-node-timeout * cluster-slave-validity-factor

那么就没有资格切换成master,这个也跟哨兵是一样的,从节点超时过滤的步骤

7.3 从节点选举

哨兵:对所有从节点进行排序,slave priority,offset,run id

每个从节点,都根据自己对master复制数据的offset,设置一个选举时间,offset越大(复制数据越多)的从节点,选举时间越靠前,优先进行选举

所有的master node开始slave选举投票,给要选举的slave投票,如果大部分

master node(N/2 + 1)

都投票给了某从节点,那么选举通过,该从节点可以切换成master

从节点执行主备切换,从节点切换为主节点

7.4 与哨兵比较

整个流程跟哨兵相比,非常类似,所以说,redis cluster功能强大,直接集成了replication和sentinal的功能

参考

《Java工程师面试突击第1季-中华石杉老师》

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
7天前
|
消息中间件 存储 缓存
大厂面试高频:Kafka 工作原理 ( 详细图解 )
本文详细解析了 Kafka 的核心架构和实现原理,消息中间件是亿级互联网架构的基石,大厂面试高频,非常重要,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:Kafka 工作原理 ( 详细图解 )
|
19天前
|
存储 Java 关系型数据库
高效连接之道:Java连接池原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。频繁创建和关闭连接会消耗大量资源,导致性能瓶颈。为此,Java连接池技术通过复用连接,实现高效、稳定的数据库连接管理。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接池的基本操作、配置和使用方法,以及在电商应用中的具体应用示例。
39 5
|
7天前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
9天前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
9天前
|
存储 安全 Java
面试高频:Synchronized 原理,建议收藏备用 !
本文详解Synchronized原理,包括其作用、使用方式、底层实现及锁升级机制。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
面试高频:Synchronized 原理,建议收藏备用 !
|
9天前
|
Java
Java之CountDownLatch原理浅析
本文介绍了Java并发工具类`CountDownLatch`的使用方法、原理及其与`Thread.join()`的区别。`CountDownLatch`通过构造函数接收一个整数参数作为计数器,调用`countDown`方法减少计数,`await`方法会阻塞当前线程,直到计数为零。文章还详细解析了其内部机制,包括初始化、`countDown`和`await`方法的工作原理,并给出了一个游戏加载场景的示例代码。
Java之CountDownLatch原理浅析
|
11天前
|
Java 索引 容器
Java ArrayList扩容的原理
Java 的 `ArrayList` 是基于数组实现的动态集合。初始时,`ArrayList` 底层创建一个空数组 `elementData`,并设置 `size` 为 0。当首次添加元素时,会调用 `grow` 方法将数组扩容至默认容量 10。之后每次添加元素时,如果当前数组已满,则会再次调用 `grow` 方法进行扩容。扩容规则为:首次扩容至 10,后续扩容至原数组长度的 1.5 倍或根据实际需求扩容。例如,当需要一次性添加 100 个元素时,会直接扩容至 110 而不是 15。
Java ArrayList扩容的原理
|
11天前
|
存储 缓存 Java
大厂面试必看!Java基本数据类型和包装类的那些坑
本文介绍了Java中的基本数据类型和包装类,包括整数类型、浮点数类型、字符类型和布尔类型。详细讲解了每种类型的特性和应用场景,并探讨了包装类的引入原因、装箱与拆箱机制以及缓存机制。最后总结了面试中常见的相关考点,帮助读者更好地理解和应对面试中的问题。
35 4
|
9天前
|
存储 消息中间件 NoSQL
使用Java操作Redis数据类型的详解指南
通过使用Jedis库,可以在Java中方便地操作Redis的各种数据类型。本文详细介绍了字符串、哈希、列表、集合和有序集合的基本操作及其对应的Java实现。这些示例展示了如何使用Java与Redis进行交互,为开发高效的Redis客户端应用程序提供了基础。希望本文的指南能帮助您更好地理解和使用Redis,提升应用程序的性能和可靠性。
23 1
|
17天前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
34 2