21、 Python快速开发分布式搜索引擎Scrapy精讲—爬虫数据保存

简介: 转: 【http://bdy.lqkweb.com】 【http://www.swpan.cn】 注意:数据保存的操作都是在pipelines.py文件里操作的 将数据保存为json文件 spider是一个信号检测 # -*- coding: utf-8 -*- # Define your it.

注意:数据保存的操作都是在pipelines.py文件里操作的

将数据保存为json文件

spider是一个信号检测

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
from scrapy.pipelines.images import ImagesPipeline  #导入图片下载器模块
import codecs
import json

class AdcPipeline(object):                      #定义数据处理类,必须继承object
    def __init__(self):
        self.file = codecs.open('shuju.json', 'w', encoding='utf-8')  #初始化时打开json文件
    def process_item(self, item, spider):       #process_item(item)为数据处理函数,接收一个item,item里就是爬虫最后yield item 来的数据对象
        # print('文章标题是:' + item['title'][0])
        # print('文章缩略图url是:' + item['img'][0])
        # print('文章缩略图保存路径是:' + item['img_tplj'])  #接收图片下载器填充的,图片下载后的路径

        #将数据保存为json文件
        lines = json.dumps(dict(item), ensure_ascii=False) + '\n'   #将数据对象转换成json格式
        self.file.write(lines)          #将json格式数据写入文件
        return item
def spider_closed(self,spider):     #创建一个方法继承spider,spider是一个信号,当前数据操作完成后触发这个方法
        self.file.close()               #关闭打开文件

class imgPipeline(ImagesPipeline):                      #自定义一个图片下载内,继承crapy内置的ImagesPipeline图片下载器类
    def item_completed(self, results, item, info):      #使用ImagesPipeline类里的item_completed()方法获取到图片下载后的保存路径
        for ok, value in results:
            img_lj = value['path']     #接收图片保存路径
            # print(ok)
            item['img_tplj'] = img_lj  #将图片保存路径填充到items.py里的字段里
        return item                    #将item给items.py 文件的容器函数

    #注意:自定义图片下载器设置好后,需要在

image

将数据保存到数据库

我们使用一个ORM框架sqlalchemy模块,保存数据

数据库操作文件

#!/usr/bin/env python
# -*- coding:utf-8 -*-

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column
from sqlalchemy import Integer, String, TIMESTAMP
from sqlalchemy import ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine

#配置数据库引擎信息
ENGINE = create_engine("mysql+pymysql://root:279819@127.0.0.1:3306/cshi?charset=utf8", max_overflow=10, echo=True)

Base = declarative_base()       #创建一个SQLORM基类

class SendMsg(Base):            #设计表
    __tablename__ = 'sendmsg'

    id = Column(Integer, primary_key=True, autoincrement=True)
    title = Column(String(300))
    img_tplj = Column(String(300))

def init_db():
    Base.metadata.create_all(ENGINE)        #向数据库创建指定表

def drop_db():
    Base.metadata.drop_all(ENGINE)          #向数据库删除指定表

def session():
    cls = sessionmaker(bind=ENGINE)         #创建sessionmaker类,操作表
    return cls()

# drop_db()         #删除表
# init_db()         #创建表

pipelines.py文件

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
from scrapy.pipelines.images import ImagesPipeline  #导入图片下载器模块
from adc import shujuku as ORM                      #导入数据库文件

class AdcPipeline(object):                      #定义数据处理类,必须继承object
    def __init__(self):
        ORM.init_db()                           #创建数据库表
    def process_item(self, item, spider):       #process_item(item)为数据处理函数,接收一个item,item里就是爬虫最后yield item 来的数据对象
        print('文章标题是:' + item['title'][0])
        print('文章缩略图url是:' + item['img'][0])
        print('文章缩略图保存路径是:' + item['img_tplj'])  #接收图片下载器填充的,图片下载后的路径

        mysq = ORM.session()
        shuju = ORM.SendMsg(title=item['title'][0], img_tplj=item['img_tplj'])
        mysq.add(shuju)
        mysq.commit()
        return item

class imgPipeline(ImagesPipeline):                      #自定义一个图片下载内,继承crapy内置的ImagesPipeline图片下载器类
    def item_completed(self, results, item, info):      #使用ImagesPipeline类里的item_completed()方法获取到图片下载后的保存路径
        for ok, value in results:
            img_lj = value['path']     #接收图片保存路径
            # print(ok)
            item['img_tplj'] = img_lj  #将图片保存路径填充到items.py里的字段里
        return item                    #将item给items.py 文件的容器函数

    #注意:自定义图片下载器设置好后,需要在

【转载自:http://www.lqkweb.com

相关文章
|
1月前
|
数据采集 存储 缓存
PHP爬虫的使用与开发
本文深入探讨了PHP爬虫的使用与开发,涵盖基本原理、关键技术、开发实践及优化策略。从发送HTTP请求、解析HTML到数据存储,再到处理反爬机制,全面指导读者构建高效可靠的爬虫程序。
54 3
|
2月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
127 6
|
5天前
|
分布式计算 DataWorks 大数据
分布式Python计算服务MaxFrame测评
一文带你入门分布式Python计算服务MaxFrame
51 22
分布式Python计算服务MaxFrame测评
|
3天前
|
SQL 分布式计算 DataWorks
MaxCompute MaxFrame评测 | 分布式Python计算服务MaxFrame(完整操作版)
在当今数字化迅猛发展的时代,数据信息的保存与分析对企业决策至关重要。MaxCompute MaxFrame是阿里云自研的分布式计算框架,支持Python编程接口、兼容Pandas接口并自动进行分布式计算。通过MaxCompute的海量计算资源,企业可以进行大规模数据处理、可视化数据分析及科学计算等任务。本文将详细介绍如何开通MaxCompute和DataWorks服务,并使用MaxFrame进行数据操作。包括创建项目、绑定数据源、编写PyODPS 3节点代码以及执行SQL查询等内容。最后,针对使用过程中遇到的问题提出反馈建议,帮助用户更好地理解和使用MaxFrame。
|
4天前
|
分布式计算 数据处理 MaxCompute
云产品评测|分布式Python计算服务MaxFrame
云产品评测|分布式Python计算服务MaxFrame
31 2
|
8天前
|
人工智能 分布式计算 数据处理
有奖评测,基于分布式 Python 计算服务 MaxFrame 进行数据处理
阿里云MaxCompute MaxFrame推出分布式Python计算服务MaxFrame评测活动,助力开发者高效完成大规模数据处理、可视化探索及ML/AI开发。活动时间为2024年12月17日至2025年1月31日,参与者需体验MaxFrame并发布评测文章,有机会赢取精美礼品。
|
20天前
|
人工智能 分布式计算 数据处理
云产品评测:MaxFrame — 分布式Python计算服务的最佳实践与体验
阿里云推出的MaxFrame是一款高性能分布式计算平台,专为大规模数据处理和AI应用设计。它提供了强大的Python编程接口,支持分布式Pandas操作,显著提升数据处理速度(3-5倍)。MaxFrame在大语言模型数据处理中表现出色,具备高效内存管理和任务调度能力。然而,在开通流程、API文档及功能集成度方面仍有改进空间。总体而言,MaxFrame在易用性和计算效率上具有明显优势,但在开放性和社区支持方面有待加强。
46 9
|
22天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
58 2
|
23天前
|
人工智能 分布式计算 数据处理
云产品评测:分布式Python计算服务MaxFrame
云产品评测:分布式Python计算服务MaxFrame
62 3
|
17天前
|
分布式计算 数据处理 MaxCompute
分布式Python计算服务MaxFrame使用心得
大家好,我是V哥。MaxFrame是阿里云自研的分布式计算框架,专为Python开发者设计,支持大规模数据处理和AI模型开发。MaxFrame适用于快速进行数据处理、数据科学和交互式探索,支持按量付费及包年包月两种计费方式。通过两个案例(金融数据清洗和大语言模型预处理),展示了MaxFrame在大规模数据处理中的显著性能提升。安装MaxFrame客户端只需简单几步,轻松开启高效数据处理之旅。欢迎关注威哥爱编程,一起交流技术心得!