20、 Python快速开发分布式搜索引擎Scrapy精讲—编写spiders爬虫文件循环抓取内容—meta属性返回指定值给回调函数—Scrapy内置图片下载器

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 编写spiders爬虫文件循环抓取内容 Request()方法,将指定的url地址添加到下载器下载页面,两个必须参数,  参数:  url='url'  callback=页面处理函数  使用时需要yield Request() parse.

编写spiders爬虫文件循环抓取内容

Request()方法,将指定的url地址添加到下载器下载页面,两个必须参数,
  参数:
  url='url'
  callback=页面处理函数
  使用时需要yield Request()

parse.urljoin()方法,是urllib库下的方法,是自动url拼接,如果第二个参数的url地址是相对路径会自动与第一个参数拼接

# -*- coding: utf-8 -*-
import scrapy
from scrapy.http import Request                             #导入url返回给下载器的方法
from urllib import parse                                    #导入urllib库里的parse模块

class PachSpider(scrapy.Spider):
    name = 'pach'
    allowed_domains = ['blog.jobbole.com']                  #起始域名
    start_urls = ['http://blog.jobbole.com/all-posts/']     #起始url

    def parse(self, response):
        """
        获取列表页的文章url地址,交给下载器
        """
        #获取当前页文章url
        lb_url = response.xpath('//a[@class="archive-title"]/@href').extract()  #获取文章列表url
        for i in lb_url:
            # print(parse.urljoin(response.url,i))                                             #urllib库里的parse模块的urljoin()方法,是自动url拼接,如果第二个参数的url地址是相对路径会自动与第一个参数拼接
            yield Request(url=parse.urljoin(response.url, i), callback=self.parse_wzhang)      #将循环到的文章url添加给下载器,下载后交给parse_wzhang回调函数

        #获取下一页列表url,交给下载器,返回给parse函数循环
        x_lb_url = response.xpath('//a[@class="next page-numbers"]/@href').extract()         #获取下一页文章列表url
        if x_lb_url:
            yield Request(url=parse.urljoin(response.url, x_lb_url[0]), callback=self.parse)     #获取到下一页url返回给下载器,回调给parse函数循环进行

    def parse_wzhang(self,response):
        title = response.xpath('//div[@class="entry-header"]/h1/text()').extract()           #获取文章标题
        print(title)

image

Request()函数在返回url时,同时可以通过meta属性返回一个自定义字典给回调函数

# -*- coding: utf-8 -*-
import scrapy
from scrapy.http import Request                             #导入url返回给下载器的方法
from urllib import parse                                    #导入urllib库里的parse模块
from adc.items import AdcItem                               #导入items数据接收模块的接收类

class PachSpider(scrapy.Spider):
    name = 'pach'
    allowed_domains = ['blog.jobbole.com']                  #起始域名
    start_urls = ['http://blog.jobbole.com/all-posts/']     #起始url

    def parse(self, response):
        """
        获取列表页的文章url地址,交给下载器
        """
        #获取当前页文章url
        lb = response.css('div .post.floated-thumb')  #获取文章列表区块,css选择器
        # print(lb)
        for i in lb:
            lb_url = i.css('.archive-title ::attr(href)').extract_first('')     #获取区块里文章url
            # print(lb_url)

            lb_img = i.css('.post-thumb img ::attr(src)').extract_first('')     #获取区块里文章缩略图
            # print(lb_img)

            yield Request(url=parse.urljoin(response.url, lb_url), meta={'lb_img':parse.urljoin(response.url, lb_img)}, callback=self.parse_wzhang)      #将循环到的文章url添加给下载器,下载后交给parse_wzhang回调函数

        #获取下一页列表url,交给下载器,返回给parse函数循环
        x_lb_url = response.css('.next.page-numbers ::attr(href)').extract_first('')         #获取下一页文章列表url
        if x_lb_url:
            yield Request(url=parse.urljoin(response.url, x_lb_url), callback=self.parse)     #获取到下一页url返回给下载器,回调给parse函数循环进行

    def parse_wzhang(self,response):
        title = response.css('.entry-header h1 ::text').extract()           #获取文章标题
        # print(title)

        tp_img = response.meta.get('lb_img', '')                            #接收meta传过来的值,用get获取防止出错
        # print(tp_img)

        shjjsh = AdcItem()                                                                   #实例化数据接收类
        shjjsh['title'] = title                                                              #将数据传输给items接收模块的指定类
        shjjsh['img'] = tp_img

        yield shjjsh                                #将接收对象返回给pipelines.py处理模块
    • *

Scrapy内置图片下载器使用

Scrapy给我们内置了一个图片下载器在crapy.pipelines.images.ImagesPipeline,专门用于将爬虫抓取到图片url后将图片下载到本地

第一步、爬虫抓取图片URL地址后,填充到 items.py文件的容器函数

  爬虫文件

# -*- coding: utf-8 -*-
import scrapy
from scrapy.http import Request                             #导入url返回给下载器的方法
from urllib import parse                                    #导入urllib库里的parse模块
from adc.items import AdcItem                               #导入items数据接收模块的接收类

class PachSpider(scrapy.Spider):
    name = 'pach'
    allowed_domains = ['blog.jobbole.com']                  #起始域名
    start_urls = ['http://blog.jobbole.com/all-posts/']     #起始url

    def parse(self, response):
        """
        获取列表页的文章url地址,交给下载器
        """
        #获取当前页文章url
        lb = response.css('div .post.floated-thumb')  #获取文章列表区块,css选择器
        # print(lb)
        for i in lb:
            lb_url = i.css('.archive-title ::attr(href)').extract_first('')     #获取区块里文章url
            # print(lb_url)

            lb_img = i.css('.post-thumb img ::attr(src)').extract_first('')     #获取区块里文章缩略图
            # print(lb_img)

            yield Request(url=parse.urljoin(response.url, lb_url), meta={'lb_img':parse.urljoin(response.url, lb_img)}, callback=self.parse_wzhang)      #将循环到的文章url添加给下载器,下载后交给parse_wzhang回调函数

        #获取下一页列表url,交给下载器,返回给parse函数循环
        x_lb_url = response.css('.next.page-numbers ::attr(href)').extract_first('')         #获取下一页文章列表url
        if x_lb_url:
            yield Request(url=parse.urljoin(response.url, x_lb_url), callback=self.parse)     #获取到下一页url返回给下载器,回调给parse函数循环进行

    def parse_wzhang(self,response):
        title = response.css('.entry-header h1 ::text').extract()           #获取文章标题
        # print(title)

        tp_img = response.meta.get('lb_img', '')                            #接收meta传过来的值,用get获取防止出错
        # print(tp_img)

        shjjsh = AdcItem()                                                                   #实例化数据接收类
        shjjsh['title'] = title                                                              #将数据传输给items接收模块的指定类
        shjjsh['img'] = [tp_img]

        yield shjjsh                                #将接收对象返回给pipelines.py处理模块

第二步、设置 items.py 文件的容器函数,接收爬虫获取到的数据填充

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html

import scrapy

#items.py,文件是专门用于,接收爬虫获取到的数据信息的,就相当于是容器文件

class AdcItem(scrapy.Item):    #设置爬虫获取到的信息容器类
    title = scrapy.Field()     #接收爬虫获取到的title信息
    img = scrapy.Field()       #接收缩略图
    img_tplj = scrapy.Field()  #图片保存路径

第三步、在pipelines.py使用crapy内置的图片下载器

1、首先引入内置图片下载器

2、自定义一个图片下载内,继承crapy内置的ImagesPipeline图片下载器类

3、使用ImagesPipeline类里的item_completed()方法获取到图片下载后的保存路径

4、在settings.py设置文件里,注册自定义图片下载器类,和设置图片保存路径

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
from scrapy.pipelines.images import ImagesPipeline  #导入图片下载器模块

class AdcPipeline(object):                      #定义数据处理类,必须继承object
    def process_item(self, item, spider):       #process_item(item)为数据处理函数,接收一个item,item里就是爬虫最后yield item 来的数据对象
        print('文章标题是:' + item['title'][0])
        print('文章缩略图url是:' + item['img'][0])
        print('文章缩略图保存路径是:' + item['img_tplj'])  #接收图片下载器填充的,图片下载后的路径

        return item

class imgPipeline(ImagesPipeline):                      #自定义一个图片下载内,继承crapy内置的ImagesPipeline图片下载器类
    def item_completed(self, results, item, info):      #使用ImagesPipeline类里的item_completed()方法获取到图片下载后的保存路径
        for ok, value in results:
            img_lj = value['path']     #接收图片保存路径
            # print(ok)
            item['img_tplj'] = img_lj  #将图片保存路径填充到items.py里的字段里
        return item                    #将item给items.py 文件的容器函数

    #注意:自定义图片下载器设置好后,需要在

在settings.py设置文件里,注册自定义图片下载器类,和设置图片保存路径

IMAGES_URLS_FIELD 设置要下载图片的url地址,一般设置的items.py里接收的字段
IMAGES_STORE 设置图片保存路径

# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
   'adc.pipelines.AdcPipeline': 300,  #注册adc.pipelines.AdcPipeline类,后面一个数字参数表示执行等级,
   'adc.pipelines.imgPipeline': 1,    #注册自定义图片下载器,数值越小,越优先执行
}

IMAGES_URLS_FIELD = 'img'                             #设置要下载图片的url字段,就是图片在items.py里的字段里
lujin = os.path.abspath(os.path.dirname(__file__))
IMAGES_STORE = os.path.join(lujin, 'img')             #设置图片保存路径

image
【转载自:http://www.lqkweb.com

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
4月前
|
数据采集 存储 NoSQL
分布式爬虫去重:Python + Redis实现高效URL去重
分布式爬虫去重:Python + Redis实现高效URL去重
|
5月前
|
Python
解决Python报错:DataFrame对象没有concat属性的多种方法(解决方案汇总)
总的来说,解决“DataFrame对象没有concat属性”的错误的关键是理解concat函数应该如何正确使用,以及Pandas库提供了哪些其他的数据连接方法。希望这些方法能帮助你解决问题。记住,编程就像是解谜游戏,每一个错误都是一个谜题,解决它们需要耐心和细心。
242 15
|
8月前
|
分布式计算 DataWorks 大数据
分布式Python计算服务MaxFrame测评
一文带你入门分布式Python计算服务MaxFrame
155 23
分布式Python计算服务MaxFrame测评
|
8月前
|
物联网 Python
请问:如何使用python对物联网平台上设备的属性进行更改?
为验证项目可行性,本实验利用阿里云物联网平台创建设备并定义电流、电压两个整型属性。通过Python与平台交互,实现对设备属性的控制,确保后续项目的顺利进行。此过程涵盖设备连接、数据传输及属性调控等功能。
|
7月前
|
C语言 Python
Python学习:内建属性、内建函数的教程
本文介绍了Python中的内建属性和内建函数。内建属性包括`__init__`、`__new__`、`__class__`等,通过`dir()`函数可以查看类的所有内建属性。内建函数如`range`、`map`、`filter`、`reduce`和`sorted`等,分别用于生成序列、映射操作、过滤操作、累积计算和排序。其中,`reduce`在Python 3中需从`functools`模块导入。示例代码展示了这些特性和函数的具体用法及注意事项。
101 2
|
8月前
|
分布式计算 DataWorks 数据处理
产品测评 | 上手分布式Python计算服务MaxFrame产品最佳实践
MaxFrame是阿里云自研的分布式计算框架,专为大数据处理设计,提供高效便捷的Python开发体验。其主要功能包括Python编程接口、直接利用MaxCompute资源、与MaxCompute Notebook集成及镜像管理功能。本文基于MaxFrame最佳实践,详细介绍了在DataWorks中使用MaxFrame创建数据源、PyODPS节点和MaxFrame会话的过程,并展示了如何通过MaxFrame实现分布式Pandas处理和大语言模型数据处理。测评反馈指出,虽然MaxFrame具备强大的数据处理能力,但在文档细节和新手友好性方面仍有改进空间。
|
8月前
|
SQL 分布式计算 DataWorks
MaxCompute MaxFrame评测 | 分布式Python计算服务MaxFrame(完整操作版)
在当今数字化迅猛发展的时代,数据信息的保存与分析对企业决策至关重要。MaxCompute MaxFrame是阿里云自研的分布式计算框架,支持Python编程接口、兼容Pandas接口并自动进行分布式计算。通过MaxCompute的海量计算资源,企业可以进行大规模数据处理、可视化数据分析及科学计算等任务。本文将详细介绍如何开通MaxCompute和DataWorks服务,并使用MaxFrame进行数据操作。包括创建项目、绑定数据源、编写PyODPS 3节点代码以及执行SQL查询等内容。最后,针对使用过程中遇到的问题提出反馈建议,帮助用户更好地理解和使用MaxFrame。
|
7月前
|
Python
云产品评测|分布式Python计算服务MaxFrame获奖名单公布!
云产品评测|分布式Python计算服务MaxFrame获奖名单公布!
138 0
|
8月前
|
SQL 分布式计算 数据处理
云产品评测|分布式Python计算服务MaxFrame | 在本地环境中使用MaxFrame + 基于MaxFrame实现大语言模型数据处理
本文基于官方文档,介绍了由浅入深的两个部分实操测试,包括在本地环境中使用MaxFrame & 基于MaxFrame实现大语言模型数据处理,对步骤有详细说明。体验下来对MaxCompute的感受是很不错的,值得尝试并使用!
183 1
|
8月前
|
分布式计算 数据处理 MaxCompute
云产品评测|分布式Python计算服务MaxFrame
云产品评测|分布式Python计算服务MaxFrame
162 2

热门文章

最新文章

推荐镜像

更多