20、 Python快速开发分布式搜索引擎Scrapy精讲—编写spiders爬虫文件循环抓取内容—meta属性返回指定值给回调函数—Scrapy内置图片下载器

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 编写spiders爬虫文件循环抓取内容 Request()方法,将指定的url地址添加到下载器下载页面,两个必须参数,  参数:  url='url'  callback=页面处理函数  使用时需要yield Request() parse.

编写spiders爬虫文件循环抓取内容

Request()方法,将指定的url地址添加到下载器下载页面,两个必须参数,
  参数:
  url='url'
  callback=页面处理函数
  使用时需要yield Request()

parse.urljoin()方法,是urllib库下的方法,是自动url拼接,如果第二个参数的url地址是相对路径会自动与第一个参数拼接

# -*- coding: utf-8 -*-
import scrapy
from scrapy.http import Request                             #导入url返回给下载器的方法
from urllib import parse                                    #导入urllib库里的parse模块

class PachSpider(scrapy.Spider):
    name = 'pach'
    allowed_domains = ['blog.jobbole.com']                  #起始域名
    start_urls = ['http://blog.jobbole.com/all-posts/']     #起始url

    def parse(self, response):
        """
        获取列表页的文章url地址,交给下载器
        """
        #获取当前页文章url
        lb_url = response.xpath('//a[@class="archive-title"]/@href').extract()  #获取文章列表url
        for i in lb_url:
            # print(parse.urljoin(response.url,i))                                             #urllib库里的parse模块的urljoin()方法,是自动url拼接,如果第二个参数的url地址是相对路径会自动与第一个参数拼接
            yield Request(url=parse.urljoin(response.url, i), callback=self.parse_wzhang)      #将循环到的文章url添加给下载器,下载后交给parse_wzhang回调函数

        #获取下一页列表url,交给下载器,返回给parse函数循环
        x_lb_url = response.xpath('//a[@class="next page-numbers"]/@href').extract()         #获取下一页文章列表url
        if x_lb_url:
            yield Request(url=parse.urljoin(response.url, x_lb_url[0]), callback=self.parse)     #获取到下一页url返回给下载器,回调给parse函数循环进行

    def parse_wzhang(self,response):
        title = response.xpath('//div[@class="entry-header"]/h1/text()').extract()           #获取文章标题
        print(title)

image

Request()函数在返回url时,同时可以通过meta属性返回一个自定义字典给回调函数

# -*- coding: utf-8 -*-
import scrapy
from scrapy.http import Request                             #导入url返回给下载器的方法
from urllib import parse                                    #导入urllib库里的parse模块
from adc.items import AdcItem                               #导入items数据接收模块的接收类

class PachSpider(scrapy.Spider):
    name = 'pach'
    allowed_domains = ['blog.jobbole.com']                  #起始域名
    start_urls = ['http://blog.jobbole.com/all-posts/']     #起始url

    def parse(self, response):
        """
        获取列表页的文章url地址,交给下载器
        """
        #获取当前页文章url
        lb = response.css('div .post.floated-thumb')  #获取文章列表区块,css选择器
        # print(lb)
        for i in lb:
            lb_url = i.css('.archive-title ::attr(href)').extract_first('')     #获取区块里文章url
            # print(lb_url)

            lb_img = i.css('.post-thumb img ::attr(src)').extract_first('')     #获取区块里文章缩略图
            # print(lb_img)

            yield Request(url=parse.urljoin(response.url, lb_url), meta={'lb_img':parse.urljoin(response.url, lb_img)}, callback=self.parse_wzhang)      #将循环到的文章url添加给下载器,下载后交给parse_wzhang回调函数

        #获取下一页列表url,交给下载器,返回给parse函数循环
        x_lb_url = response.css('.next.page-numbers ::attr(href)').extract_first('')         #获取下一页文章列表url
        if x_lb_url:
            yield Request(url=parse.urljoin(response.url, x_lb_url), callback=self.parse)     #获取到下一页url返回给下载器,回调给parse函数循环进行

    def parse_wzhang(self,response):
        title = response.css('.entry-header h1 ::text').extract()           #获取文章标题
        # print(title)

        tp_img = response.meta.get('lb_img', '')                            #接收meta传过来的值,用get获取防止出错
        # print(tp_img)

        shjjsh = AdcItem()                                                                   #实例化数据接收类
        shjjsh['title'] = title                                                              #将数据传输给items接收模块的指定类
        shjjsh['img'] = tp_img

        yield shjjsh                                #将接收对象返回给pipelines.py处理模块
    • *

Scrapy内置图片下载器使用

Scrapy给我们内置了一个图片下载器在crapy.pipelines.images.ImagesPipeline,专门用于将爬虫抓取到图片url后将图片下载到本地

第一步、爬虫抓取图片URL地址后,填充到 items.py文件的容器函数

  爬虫文件

# -*- coding: utf-8 -*-
import scrapy
from scrapy.http import Request                             #导入url返回给下载器的方法
from urllib import parse                                    #导入urllib库里的parse模块
from adc.items import AdcItem                               #导入items数据接收模块的接收类

class PachSpider(scrapy.Spider):
    name = 'pach'
    allowed_domains = ['blog.jobbole.com']                  #起始域名
    start_urls = ['http://blog.jobbole.com/all-posts/']     #起始url

    def parse(self, response):
        """
        获取列表页的文章url地址,交给下载器
        """
        #获取当前页文章url
        lb = response.css('div .post.floated-thumb')  #获取文章列表区块,css选择器
        # print(lb)
        for i in lb:
            lb_url = i.css('.archive-title ::attr(href)').extract_first('')     #获取区块里文章url
            # print(lb_url)

            lb_img = i.css('.post-thumb img ::attr(src)').extract_first('')     #获取区块里文章缩略图
            # print(lb_img)

            yield Request(url=parse.urljoin(response.url, lb_url), meta={'lb_img':parse.urljoin(response.url, lb_img)}, callback=self.parse_wzhang)      #将循环到的文章url添加给下载器,下载后交给parse_wzhang回调函数

        #获取下一页列表url,交给下载器,返回给parse函数循环
        x_lb_url = response.css('.next.page-numbers ::attr(href)').extract_first('')         #获取下一页文章列表url
        if x_lb_url:
            yield Request(url=parse.urljoin(response.url, x_lb_url), callback=self.parse)     #获取到下一页url返回给下载器,回调给parse函数循环进行

    def parse_wzhang(self,response):
        title = response.css('.entry-header h1 ::text').extract()           #获取文章标题
        # print(title)

        tp_img = response.meta.get('lb_img', '')                            #接收meta传过来的值,用get获取防止出错
        # print(tp_img)

        shjjsh = AdcItem()                                                                   #实例化数据接收类
        shjjsh['title'] = title                                                              #将数据传输给items接收模块的指定类
        shjjsh['img'] = [tp_img]

        yield shjjsh                                #将接收对象返回给pipelines.py处理模块

第二步、设置 items.py 文件的容器函数,接收爬虫获取到的数据填充

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html

import scrapy

#items.py,文件是专门用于,接收爬虫获取到的数据信息的,就相当于是容器文件

class AdcItem(scrapy.Item):    #设置爬虫获取到的信息容器类
    title = scrapy.Field()     #接收爬虫获取到的title信息
    img = scrapy.Field()       #接收缩略图
    img_tplj = scrapy.Field()  #图片保存路径

第三步、在pipelines.py使用crapy内置的图片下载器

1、首先引入内置图片下载器

2、自定义一个图片下载内,继承crapy内置的ImagesPipeline图片下载器类

3、使用ImagesPipeline类里的item_completed()方法获取到图片下载后的保存路径

4、在settings.py设置文件里,注册自定义图片下载器类,和设置图片保存路径

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
from scrapy.pipelines.images import ImagesPipeline  #导入图片下载器模块

class AdcPipeline(object):                      #定义数据处理类,必须继承object
    def process_item(self, item, spider):       #process_item(item)为数据处理函数,接收一个item,item里就是爬虫最后yield item 来的数据对象
        print('文章标题是:' + item['title'][0])
        print('文章缩略图url是:' + item['img'][0])
        print('文章缩略图保存路径是:' + item['img_tplj'])  #接收图片下载器填充的,图片下载后的路径

        return item

class imgPipeline(ImagesPipeline):                      #自定义一个图片下载内,继承crapy内置的ImagesPipeline图片下载器类
    def item_completed(self, results, item, info):      #使用ImagesPipeline类里的item_completed()方法获取到图片下载后的保存路径
        for ok, value in results:
            img_lj = value['path']     #接收图片保存路径
            # print(ok)
            item['img_tplj'] = img_lj  #将图片保存路径填充到items.py里的字段里
        return item                    #将item给items.py 文件的容器函数

    #注意:自定义图片下载器设置好后,需要在

在settings.py设置文件里,注册自定义图片下载器类,和设置图片保存路径

IMAGES_URLS_FIELD 设置要下载图片的url地址,一般设置的items.py里接收的字段
IMAGES_STORE 设置图片保存路径

# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
   'adc.pipelines.AdcPipeline': 300,  #注册adc.pipelines.AdcPipeline类,后面一个数字参数表示执行等级,
   'adc.pipelines.imgPipeline': 1,    #注册自定义图片下载器,数值越小,越优先执行
}

IMAGES_URLS_FIELD = 'img'                             #设置要下载图片的url字段,就是图片在items.py里的字段里
lujin = os.path.abspath(os.path.dirname(__file__))
IMAGES_STORE = os.path.join(lujin, 'img')             #设置图片保存路径

image
【转载自:http://www.lqkweb.com

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
11天前
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
21天前
|
监控 网络安全 开发者
Python中的Paramiko与FTP文件夹及文件检测技巧
通过使用 Paramiko 和 FTP 库,开发者可以方便地检测远程服务器上的文件和文件夹是否存在。Paramiko 提供了通过 SSH 协议进行远程文件管理的能力,而 `ftplib` 则提供了通过 FTP 协议进行文件传输和管理的功能。通过理解和应用这些工具,您可以更加高效地管理和监控远程服务器上的文件系统。
51 20
|
1月前
|
分布式计算 DataWorks 数据处理
产品测评 | 上手分布式Python计算服务MaxFrame产品最佳实践
MaxFrame是阿里云自研的分布式计算框架,专为大数据处理设计,提供高效便捷的Python开发体验。其主要功能包括Python编程接口、直接利用MaxCompute资源、与MaxCompute Notebook集成及镜像管理功能。本文基于MaxFrame最佳实践,详细介绍了在DataWorks中使用MaxFrame创建数据源、PyODPS节点和MaxFrame会话的过程,并展示了如何通过MaxFrame实现分布式Pandas处理和大语言模型数据处理。测评反馈指出,虽然MaxFrame具备强大的数据处理能力,但在文档细节和新手友好性方面仍有改进空间。
|
27天前
|
存储 数据采集 数据处理
如何在Python中高效地读写大型文件?
大家好,我是V哥。上一篇介绍了Python文件读写操作,今天聊聊如何高效处理大型文件。主要方法包括:逐行读取、分块读取、内存映射(mmap)、pandas分块处理CSV、numpy处理二进制文件、itertools迭代处理及linecache逐行读取。这些方法能有效节省内存,提升效率。关注威哥爱编程,学习更多Python技巧。
|
28天前
|
存储 JSON 对象存储
如何使用 Python 进行文件读写操作?
大家好,我是V哥。本文介绍Python中文件读写操作的方法,包括文件读取、写入、追加、二进制模式、JSON、CSV和Pandas模块的使用,以及对象序列化与反序列化。通过这些方法,你可以根据不同的文件类型和需求,灵活选择合适的方式进行操作。希望对正在学习Python的小伙伴们有所帮助。欢迎关注威哥爱编程,全栈路上我们并肩前行。
|
1月前
|
SQL 分布式计算 数据处理
云产品评测|分布式Python计算服务MaxFrame | 在本地环境中使用MaxFrame + 基于MaxFrame实现大语言模型数据处理
本文基于官方文档,介绍了由浅入深的两个部分实操测试,包括在本地环境中使用MaxFrame & 基于MaxFrame实现大语言模型数据处理,对步骤有详细说明。体验下来对MaxCompute的感受是很不错的,值得尝试并使用!
53 1
|
1月前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
1月前
|
SQL 分布式计算 DataWorks
MaxCompute MaxFrame评测 | 分布式Python计算服务MaxFrame(完整操作版)
在当今数字化迅猛发展的时代,数据信息的保存与分析对企业决策至关重要。MaxCompute MaxFrame是阿里云自研的分布式计算框架,支持Python编程接口、兼容Pandas接口并自动进行分布式计算。通过MaxCompute的海量计算资源,企业可以进行大规模数据处理、可视化数据分析及科学计算等任务。本文将详细介绍如何开通MaxCompute和DataWorks服务,并使用MaxFrame进行数据操作。包括创建项目、绑定数据源、编写PyODPS 3节点代码以及执行SQL查询等内容。最后,针对使用过程中遇到的问题提出反馈建议,帮助用户更好地理解和使用MaxFrame。
|
2天前
|
NoSQL Java Redis
Springboot使用Redis实现分布式锁
通过这些步骤和示例,您可以系统地了解如何在Spring Boot中使用Redis实现分布式锁,并在实际项目中应用。希望这些内容对您的学习和工作有所帮助。
113 83
|
4月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?

推荐镜像

更多