logstash_output_kafka:Mysql同步Kafka深入详解

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 实际业务场景中,会遇到基础数据存在Mysql中,实时写入数据量比较大的情景。迁移至kafka是一种比较好的业务选型方案。

0、题记

实际业务场景中,会遇到基础数据存在Mysql中,实时写入数据量比较大的情景。
迁移至kafka是一种比较好的业务选型方案。

32.png

而mysql写入kafka的选型方案有:
方案一:logstash_output_kafka 插件。
方案二:kafka_connector。
方案三:debezium 插件。
方案四:flume。
方案五:其他类似方案。

其中:debezium和flume是基于mysql binlog实现的。
如果需要同步历史全量数据+实时更新数据,建议使用logstash。

1、logstash同步原理

常用的logstash的插件是:logstash_input_jdbc实现关系型数据库到Elasticsearch等的同步。
实际上,核心logstash的同步原理的掌握,有助于大家理解类似的各种库之间的同步。
logstash核心原理:输入生成事件,过滤器修改它们,输出将它们发送到其他地方。
logstash核心三部分组成:input、filter、output。

33.png

input { }
filter { }
output { }

1.1 input输入

包含但远不限于:

 1.jdbc:关系型数据库:mysql、oracle等。
 2.file:从文件系统上的文件读取。
 3.syslog:在已知端口514上侦听syslog消息。

redis:redis消息。 beats:处理 Beats发送的事件。
kafka:kafka实时数据流。

1.2 filter过滤器

过滤器是Logstash管道中的中间处理设备。您可以将过滤器与条件组合,以便在事件满足特定条件时对其执行操作。
可以把它比作数据处理的ETL环节。
一些有用的过滤包括:

 1.grok:解析并构造任意文本。Grok是目前Logstash中将非结构化日志数据解析为结构化和可查询内容的最佳方式。有了内置于Logstash的120种模式,您很可能会找到满足您需求的模式!
 2.mutate:对事件字段执行常规转换。您可以重命名,删除,替换和修改事件中的字段。
 3.drop:完全删除事件,例如调试事件。
 4.clone:制作事件的副本,可能添加或删除字段。
 5.geoip:添加有关IP地址的地理位置的信息。

1.3 output输出

输出是Logstash管道的最后阶段。一些常用的输出包括:

1.elasticsearch:将事件数据发送到Elasticsearch。
2.file:将事件数据写入磁盘上的文件。
3.kafka:将事件写入Kafka。

详细的filter demo参考:https://github.com/hellosign/logstash-fundamentals/blob/master/examples/complex_logstash.md

2、logstash_output_kafka同步Mysql到kafka配置参考

input {
    jdbc {
      jdbc_connection_string => "jdbc:mysql://192.168.1.12:3306/news_base"
      jdbc_user => "root"
      jdbc_password => "xxxxxxx"
      jdbc_driver_library => "/home/logstash-6.4.0/lib/mysql-connector-java-5.1.47.jar"
      jdbc_driver_class => "com.mysql.jdbc.Driver"
      #schedule => "* * * * *"
      statement => "SELECT * from news_info WHERE id > :sql_last_value  order by id"
      use_column_value => true
      tracking_column => "id"        
      tracking_column_type => "numeric"
      record_last_run => true
      last_run_metadata_path => "/home/logstash-6.4.0/sync_data/news_last_run"    

    }
 
}

filter {
   ruby{
        code => "event.set('gather_time_unix',event.get('gather_time').to_i*1000)"
    }
    ruby{
        code => "event.set('publish_time_unix',event.get('publish_time').to_i*1000)"
    }
  mutate {
    remove_field => [ "@version" ]
    remove_field => [ "@timestamp" ]
    remove_field => [ "gather_time" ]
    remove_field => [ "publish_time" ]
  }
}

 output {
      kafka {
            bootstrap_servers => "192.168.1.13:9092"
            codec => json_lines
            topic_id => "mytopic"

    }
    file {
            codec => json_lines
            path => "/tmp/output_a.log"
    }
 }

以上内容不复杂,不做细讲。
注意:
Mysql借助logstash同步后,日期类型格式:“2019-04-20 13:55:53”已经被识别为日期格式。

code =>
“event.set(‘gather_time_unix’,event.get(‘gather_time’).to_i*1000)”,

是将Mysql中的时间格式转化为时间戳格式。

3、坑总结

3.1 坑1字段大小写问题

from星友:使用logstash同步mysql数据的,因为在jdbc.conf里面没有添加 lowercase_column_names

=> “false” 这个属性,所以logstash默认把查询结果的列明改为了小写,同步进了es,所以就导致es里面看到的字段名称全是小写。

最后总结:es是支持大写字段名称的,问题出在logstash没用好,需要在同步配置中加上 lowercase_column_names => “false” 。记录下来希望可以帮到更多人,哈哈。

3.2 同步到ES中的数据会不会重复?

想将关系数据库的数据同步至ES中,如果在集群的多台服务器上同时启动logstash。

解读:实际项目中就是没用随机id 使用指定id作为es的_id ,指定id可以是url的md5.这样相同数据就会走更新覆盖以前数据

3.3 相同配置logstash,升级6.3之后不能同步数据。

解读:高版本基于时间增量有优化。

tracking_column_type => "timestamp"

应该是需要指定标识为时间类型,默认为数字类型numeric

3.4 ETL字段统一在哪处理?
解读:可以logstash同步mysql的时候sql查询阶段处理,如:select a_value as avalue*
或者filter阶段处理,mutate rename处理。

mutate {
        rename => ["shortHostname", "hostname" ]
    }

或者kafka阶段借助kafka stream处理。

4、小结

mysql2mysql:https://my.oschina.net/u/2601303/blog/1503835
推荐开源实现:https://github.com/Lunatictwo/DataX

推荐阅读:
1、实战 | canal 实现Mysql到Elasticsearch实时增量同步
2、干货 | Debezium实现Mysql到Elasticsearch高效实时同步
3、一张图理清楚关系型/非关系型数据库与Elasticsearch同步


20190117225823895.png

铭毅天下——Elasticsearch基础、进阶、实战第一公众号

相关文章
|
2月前
|
安全 关系型数据库 MySQL
如何将数据从MySQL同步到其他系统
【10月更文挑战第17天】如何将数据从MySQL同步到其他系统
339 0
|
2月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
214 0
|
8天前
|
监控 关系型数据库 MySQL
Flink CDC MySQL同步MySQL错误记录
在使用Flink CDC同步MySQL数据时,常见的错误包括连接错误、权限错误、表结构变化、数据类型不匹配、主键冲突和
49 16
|
2月前
|
SQL 存储 关系型数据库
Mysql主从同步 清理二进制日志的技巧
Mysql主从同步 清理二进制日志的技巧
35 1
|
3月前
|
消息中间件 canal 关系型数据库
Maxwell:binlog 解析器,轻松同步 MySQL 数据
Maxwell:binlog 解析器,轻松同步 MySQL 数据
403 11
|
4月前
|
SQL 存储 关系型数据库
实时计算 Flink版产品使用问题之同步MySQL多张表的过程中,内存释放依赖于什么
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
2月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
104 1
|
2月前
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
62 1
|
4月前
|
消息中间件 Java Kafka
Kafka不重复消费的终极秘籍!解锁幂等性、偏移量、去重神器,让你的数据流稳如老狗,告别数据混乱时代!
【8月更文挑战第24天】Apache Kafka作为一款领先的分布式流处理平台,凭借其卓越的高吞吐量与低延迟特性,在大数据处理领域中占据重要地位。然而,在利用Kafka进行数据处理时,如何有效避免重复消费成为众多开发者关注的焦点。本文深入探讨了Kafka中可能出现重复消费的原因,并提出了四种实用的解决方案:利用消息偏移量手动控制消费进度;启用幂等性生产者确保消息不被重复发送;在消费者端实施去重机制;以及借助Kafka的事务支持实现精确的一次性处理。通过这些方法,开发者可根据不同的应用场景灵活选择最适合的策略,从而保障数据处理的准确性和一致性。
358 9
|
4月前
|
消息中间件 负载均衡 Java
"Kafka核心机制揭秘:深入探索Producer的高效数据发布策略与Java实战应用"
【8月更文挑战第10天】Apache Kafka作为顶级分布式流处理平台,其Producer组件是数据高效发布的引擎。Producer遵循高吞吐、低延迟等设计原则,采用分批发送、异步处理及数据压缩等技术提升性能。它支持按消息键值分区,确保数据有序并实现负载均衡;提供多种确认机制保证可靠性;具备失败重试功能确保消息最终送达。Java示例展示了基本配置与消息发送流程,体现了Producer的强大与灵活性。
82 3