使用Spark SQL进行流式机器学习计算(上)

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 什么是流式机器学习, 机器学习模型获取途径, 系统演示

作者:余根茂,阿里巴巴计算平台事业部EMR团队的技术专家,参与了Hadoop,Spark,Kafka等开源项目的研发工作。目前主要专注于EMR流式计算产品的研发工作。

今天来和大家聊一下如何使用Spark SQL进行流式数据的机器学习处理。本文主要分为以下几个章节:

  • 什么是流式机器学习
  • 机器学习模型获取途径
  • 系统演示

1. 什么是流式机器学习

通常,当我们听到有人提到实时数据机器学习时,其实他们是讨论:

  • 他们希望有一个模型,这个模型利用最近历史信息来进行预测分析。举一个天气的例子,如果最近几天都是晴天,那么未来几天极小概率会出现雨雪和低温天气
  • 这个模型还需要是可更新的。当数据流经系统时,模型是可以随之进化升级。举个例子,随着业务规模的扩大,我们希望零售销售模型仍然保持准确。

第一个例子我们可以将它归为时序预测。第二个例子中,模型需要更新或者重新训练,这是一个non-stationarity问题。时序预测和non-stationarity数据分布是两类不同的问题。本文主要关注第二类问题,对于这类问题,一般的解决方案主要有:

  • 增量式算法:有一些算法支持通过数据逐步学习。也就是说,每次进来一些新的数据时,模型会被更新。SVM,神经网络等算法都有增量式版本,此外贝叶斯网络也可以用作增量学习。
  • 周期重新学习:一个更加直接的方法就是用一批最新数据重新训练我们的模型。这种方法可以用到的绝大多数的算法上。

2. 机器学习模型获取途径

实时机器学习应用分成两块,一部分是模型实时训练,另一部分是数据实时预测分析。现实中,我们可能没法实现模型的实时训练,只能退而求其次地使用已经训练好模型。这些模型可能会周期性地使用历史数据训练更新一次。所以,我们可以根据实际的算法和模型时效性要求,来选择实时训练模型还是使用预训练好的模型。

  • 模型算法支持增量训练:可以选择用流式数据实时训练更新
  • 模型算法不自持增量训练:可以选择用离线数据预先训练好模式

回到主题上,我们要实现使用Spark SQL进行流式机器学习。前面几篇文章已经简单介绍了EMR如何使用Spark SQL进行流式ETL处理。既然要进行机器学习,我们很自然地想到Spark MLlib。DataBricks有篇文档介绍了在Spark Structured Streaming进行机器学习,大家有兴趣的可以看下。如果想将Spark MLlib应用到Spark SQL上,我们可以简单地将MLlib算法包装成UDF使用。另外一个模型获取途径是利用阿里云上的一些在线机器学习服务,我们可以将在线机器学习服务使用UDF封装后使用。

  • 使用UDF封装现有的Spark MLlib算法
  • 使用UDF封装阿里云在线机器学习服务

限于篇幅,我会分两篇文章分别介绍这两个方式,本文将简单介绍如何利用Spark MLlib进行流式机器学习。

3. 系统演示

本节,我们将演示一下如何利用逻辑回归算法进行演示。

3.1 系统架构
下面这张图展示了整个实时监测系统的架构,前端接LogService数据,实时监测分析结果写入到RDS,最后通过DataV展示出来。
image

3.2 测试数据集
测试数据集使用Spark自带的sample_libsvm_data.txt,我们要做的是写一个数据生成器,将数据集的数据不断地向SLS中发送,模拟流式数据。

算法模型准备
Spark MLlib提供了大量的机器学习算法实现,可以方便的再RDD或者DataFrame API上使用,但是无法直接用在SQL API上,所以我们需要使用UDF来封装一下。这里,我们选用逻辑回归算法,具体的实现就不细说了,可以参考这里的代码:LogisticRegressionUDF.scala

3.4 部署测试

  • CLI
git clone git@github.com:aliyun/aliyun-emapreduce-sdk.git
cd aliyun-emapreduce-sdk
git checkout -b master-2.x origin/master-2.x
mvn clean package -DskipTests

## 编译完后, assembly/target目录下会生成emr-datasources_shaded_2.11-1.7.0-SNAPSHOT.jar

spark-sql --master yarn-client --num-executors 2 --executor-memory 2g --executor-cores 2 --jars emr-datasources_shaded_2.11-1.7.0-SNAPSHOT.jar --driver-class-path emr-datasources_shaded_2.11-1.7.0-SNAPSHOT.jar
  • 建表
spark-sql> USE default;

-- 测试数据源
spark-sql> CREATE TABLE IF NOT EXISTS sls_dataset
USING loghub
OPTIONS (
sls.project = "${logProjectName}",
sls.store = "${logStoreName}",
access.key.id = "${accessKeyId}",
access.key.secret = "${accessKeySecret}",
endpoint = "${endpoint}");

spark-sql> DESC sls_dataset
__logProject__  string  NULL
__logStore__  string  NULL
__shard__ int NULL
__time__  timestamp NULL
__topic__ string  NULL
__source__  string  NULL
label string  NULL
features  string  NULL
__tag__hostname__ string  NULL
__tag__path__ string  NULL
__tag__receive_time__ string  NULL
Time taken: 0.058 seconds, Fetched 11 row(s)

-- 结果数据源
spark-sql> CREATE TABLE IF NOT EXISTS rds_result
USING jdbc2
OPTIONS (
url="${rdsUrl}",
driver="com.mysql.jdbc.Driver",
dbtable="${rdsTableName}",
user="${user}",
password="${password}",
batchsize="100",
isolationLevel="NONE");

spark-sql> DESC rds_result;
acc double  NULL
label double  NULL
time  string  NULL
Time taken: 0.457 seconds, Fetched 3 row(s)
  • 注册UDF

CREATE FUNCTION Logistic_Regression AS 'org.apache.spark.sql.aliyun.udfs.ml.LogisticRegressionUDF' USING JAR '${udf_jar_path}';
  • 提交执行
SET spark.sql.streaming.checkpointLocation.lr_prediction=hdfs:///tmp/spark/lr_prediction;
SET spark.sql.streaming.query.outputMode.lr_prediction=update;
-- 由于DataSource是基于JDBC实现的,所以我们需要设置向RDS表插入数据的SQL
-- 这里我的RDS表名是`result`
SET streaming.query.lr_prediction.sql=insert into `result`(`time`, `label`, `acc`) values(?, ?, ?);

INSERT INTO 
rds_result 
SELECT 
window.start, 
label, 
sum(if(tb.predict = tb.label, 1, 0)) / count(tb.label) as acc 
FROM(
SELECT 
default.Logistic_Regression("${LR_model_path}", concat_ws(" ", label, features)) as predict, 
label, 
__time__ as time 
FROM sls_dataset) tb 
GROUP BY TUMBLING(tb.time, interval 10 second), tb.label;

3.5 效果展示
在DataV中配置上面的RDS结果表,使用折线图查看label=1的预测准确率,如下:
image

4. 小结

本文简要介绍了流式机器学习面临的几个问题,以及相应的解决方法。并使用Spark SQL结合Spark MLlib演示了一个流式机器学习的案例。下一篇,我会简要介绍Spark SQL如何结合阿里云的在线机器学习服务来进行流式机器学习应用开发。

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
1月前
|
分布式计算 大数据 Java
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
49 5
|
1月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
48 3
|
1月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
60 0
|
7天前
|
SQL JSON 分布式计算
【赵渝强老师】Spark SQL的数据模型:DataFrame
本文介绍了在Spark SQL中创建DataFrame的三种方法。首先,通过定义case class来创建表结构,然后将CSV文件读入RDD并关联Schema生成DataFrame。其次,使用StructType定义表结构,同样将CSV文件读入RDD并转换为Row对象后创建DataFrame。最后,直接加载带有格式的数据文件(如JSON),通过读取文件内容直接创建DataFrame。每种方法都包含详细的代码示例和解释。
|
1月前
|
SQL 存储 缓存
SQL计算班级语文平均分:详细步骤与技巧
在数据库管理和分析中,经常需要计算某个班级在特定科目上的平均分
|
2月前
|
SQL 存储 并行计算
Lindorm Ganos 一条 SQL 计算轨迹
Lindorm Ganos 针对轨迹距离计算场景提供了内置函数 ST_Length_Rows,结合原生时空二级索引和时空聚合计算下推技术,能够高效过滤数据并并行执行运算任务。该方案通过主键索引和时空索引快速过滤数据,并利用多Region并行计算轨迹点距离,适用于车联网等场景。具体步骤包括根据车辆识别代码和时间戳过滤数据、范围过滤轨迹点以及并行计算距离。使用限制包括只支持点类型列聚合运算及表中轨迹点需按顺序排列等。测试结果显示,Lindorm Ganos 在不同数据量下均能实现秒级响应。
27 3
|
1月前
|
SQL 分布式计算 大数据
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
42 0
|
1月前
|
SQL 分布式计算 算法
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
78 0
|
1月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
34 0
|
1月前
|
SQL 分布式计算 大数据
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
50 0