Spark学习之Spark调优与调试(7)

简介: Spark学习之Spark调优与调试(7)1. 对Spark进行调优与调试通常需要修改Spark应用运行时配置的选项。当创建一个SparkContext时就会创建一个SparkConf实例。2. Spark特定的优先级顺序来选择实际配置:优先级最高的是在用户代码中显示调用set()方法设置选项;其次是通过spark-submit传递的参数;再次是

Spark学习之Spark调优与调试(7)

1. 对Spark进行调优与调试通常需要修改Spark应用运行时配置的选项。

当创建一个SparkContext时就会创建一个SparkConf实例。

2. Spark特定的优先级顺序来选择实际配置:

优先级最高的是在用户代码中显示调用set()方法设置选项;
其次是通过spark-submit传递的参数;
再次是写在配置文件里的值;
最后是系统的默认值。

3.查看应用进度信息和性能指标有两种方式:网页用户界面、驱动器和执行器进程生成的日志文件。

4.Spark执行的组成部分:作业、任务和步骤

需求:使用Spark shell完成简单的日志分析应用。
scala> val input =sc.textFile("/home/spark01/Documents/input.text")
input: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[3] at textFile at <console>:27

scala> val tokenized = input.map(line=>line.split(" ")).filter(words=>words.size>0)
tokenized: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[5] at filter at <console>:29

scala> val counts = tokenized.map(words=>(words(0),1)).reduceByKey{(a,b)=>a+b}
counts: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[7] at reduceByKey at <console>:31

scala> // see RDD

scala> input.toDebugString
res0: String = 
(1) MapPartitionsRDD[3] at textFile at <console>:27 []
 |  /home/spark01/Documents/input.text HadoopRDD[2] at textFile at <console>:27 []

scala> counts.toDebugString
res1: String = 
(1) ShuffledRDD[7] at reduceByKey at <console>:31 []
 +-(1) MapPartitionsRDD[6] at map at <console>:31 []
    |  MapPartitionsRDD[5] at filter at <console>:29 []
    |  MapPartitionsRDD[4] at map at <console>:29 []
    |  MapPartitionsRDD[3] at textFile at <console>:27 []
    |  /home/spark01/Documents/input.text HadoopRDD[2] at textFile at <console>:27 []

scala> counts.collect()
res2: Array[(String, Int)] = Array((ERROR,1), (##input.text##,1), (INFO,4), ("",2), (WARN,2))

scala> counts.cache()
res3: counts.type = ShuffledRDD[7] at reduceByKey at <console>:31

scala> counts.collect()
res5: Array[(String, Int)] = Array((ERROR,1), (##input.text##,1), (INFO,4), ("",2), (WARN,2))

scala>

5. Spark网页用户界面

默认情况地址是http://localhost:4040
通过浏览器可以查看已经运行过的作业(job)的详细情况
如图下图:

所有任务
图1所有任务用户界面
这里写图片描述
图二作业2详细信息用户界面

6. 关键性能考量:

代码层面:并行度、序列化格式、内存管理
运行环境:硬件供给。
目录
相关文章
|
6月前
|
分布式计算 API Spark
Spark学习--day05、SparkCore电商网站实操、SparkCore-工程代码
Spark学习--day05、SparkCore电商网站实操、SparkCore-工程代码
121 11
|
6月前
|
分布式计算 并行计算 大数据
Spark学习---day02、Spark核心编程(RDD概述、RDD编程(创建、分区规则、转换算子、Action算子))(一)
Spark学习---day02、Spark核心编程 RDD概述、RDD编程(创建、分区规则、转换算子、Action算子))(一)
333 1
|
6月前
|
SQL 分布式计算 API
Spark学习------SparkSQL(概述、编程、数据的加载和保存)
Spark学习------SparkSQL(概述、编程、数据的加载和保存)
148 2
|
1月前
|
分布式计算 大数据 Java
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
49 5
|
1月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
48 3
|
1月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
58 0
|
29天前
|
分布式计算 算法 Spark
spark学习之 GraphX—预测社交圈子
spark学习之 GraphX—预测社交圈子
27 0
|
29天前
|
分布式计算 Scala Spark
educoder的spark算子学习
educoder的spark算子学习
14 0
|
2月前
|
分布式计算 Shell Scala
学习使用Spark
学习使用Spark
101 3
|
3月前
|
分布式计算 Shell Scala
如何开始学习使用Spark?
【8月更文挑战第31天】如何开始学习使用Spark?
87 2