Spark企业级应用开发和调优

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 1.Spark企业级应用开发和调优Spark项目编程优化历程记录,主要介绍了Spark企业级别的开发过程中面临的问题和调优方法。包含合理分配分片,避免计算中间结果(大数据量)的collect,合理使用map,优化广播变量等操作,降低网络和磁盘IO,提高计算效率。2.核心技术优化方法对比首先如下图(2.1),Spark应用开发在集群(伪分布式)中的记录,每一种不

1.Spark企业级应用开发和调优

Spark项目编程优化历程记录,主要介绍了Spark企业级别的开发过程中面临的问题和调优方法。包含合理分配分片,避免计算中间结果(大数据量)的collect,合理使用map,优化广播变量等操作,降低网络和磁盘IO,提高计算效率。

2.核心技术优化方法对比

首先如下图(2.1),Spark应用开发在集群(伪分布式)中的记录,每一种不同颜色的折线代表一个分布式机器

最终,图4中四条折线并行达到峰值(即CPU100%).降低了处理时间,增大了处理效率.

2.1.重要并行计算模型构建对比

图1 传统方式计算模型在模拟集群计算概览图

这里写图片描述

图2 spark并行模型1在模拟集群并行计算概览图

这里写图片描述

图3 spark并行模型2在模拟集群并行计算概览图

这里写图片描述

图4 spark并行模型3在模拟集群并行计算概览图

这里写图片描述

2.2.Spark优化技术要点

2.2.1.如何构建一个合理的弹性分布式数据集(RDD)

Spark之所以快速,一是分而治之,二是允许基于内存计算.
第一步,常用的构建一个分布式数据方式:

  • 方式一:基于文件读取
    • textFile(name, minPartitions=None, use_unicode=True) 返回RDD,可以读取text本地文件,HDFS等等
sc.textFile("file:///native/dir")
sc.textFile("/HDFS/dir")
  • 方式二:基于内存读取
    • parallelize(c, numSlices=None) 返回RDD,基于内存读取.
sc.parallelize([0, 2, 3, 4, 6], 5).glom().collect()

在项目模型中,计算模型将的x,y坐标xyload = sc.parallelize(xyload)通过内存读成RDD模式.

2.2.2.如何处理一个弹性分布式数据集

在处理弹性是分布式数据集之前,应该充分利用RDD本质的性质,RDD执行策略是懒操作,在转换和执行两个状态中,只有执行才会真正去计算,如将一个文件textFile至RDD,这个文件并没有做物理上的动作,而RDD只是逻辑映射,当执行college或者split等可以返回一个新RDD时,才会发生资源分配,计算.可以简单理解为,一个RDD转变成另个新的RDD时,才发生了真正的资源调度,计算,IO等操作.

在项目中,

cellist=xyload.map(getCellList)
cellisttxt = cellist.filter(lambda x : x != None)

其中,

  • map
map(f, preservesPartitioning=False)

返回一个新的RDD,并对RDD中的每个元素做操作(如功能函数的运算或者定义的循环,针对的元素级别的)
在项目中,实现Celllist循环操作,操作级别对弹性分布式元素中的每个元素.

  • filter(f)
cellisttxt = cellist.filter(lambda x : x != None)

返回一个新的RDD,包含满足功能函数的元素.
在项目中,实现返回cellist中元素去除None元素,保证RDD后续业务操作正确性.

2.2.3.如何优化处理数据过大的中间结果

RDD的collect操作可以实现元素级别的聚合,但是这个执行过程会造成单一driver大量IO,内存占用过大,网络传输量大等等瓶颈.

所以,在getcellist方法后,将分布式持久化,然后再通过文件批量依次读取过程,避开driver开销过大的难题.

2.2.4.广播变量的合理使用

增加广播变量降低读写。适用于某变量需要反复使用,如在各个分片中都有一个数组固定的计算值,这个数组不要反复从文件读取而直接用广播变量,最大限度降低集群的IO.

这里写图片描述

3.大数据模型开发历程

由图5,在企业中开发Spark应用,以接口的服务方式,第一次post大数据平台文件上传服务,上传所需的数据文件,二次post调用服务接口,传入Spark分布式模型必备的参数,包括执行本次执行ID,输入路径,输出路径.一期模型开始监控大数据平台执行返回的状态.

此时,基于每个RDD内存做计算,map操作得到getcellist,并通过filter去除脏数据(None),形成中间结果,分布式持久化,最后通过numpy依次读取持久化文件,并做排序后保存成最终结果.

图5 分布式Spark模型的主要执行过程示意图

这里写图片描述

最终,业务平台通过大数据平台监控得到执行成功状态信号,get最终结果文件至业务平台.

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
分布式计算 数据处理 Apache
Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
【10月更文挑战第10天】Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
166 1
|
6月前
|
机器学习/深度学习 SQL 分布式计算
Spark核心原理与应用场景解析:面试经验与必备知识点解析
本文深入探讨Spark核心原理(RDD、DAG、内存计算、容错机制)和生态系统(Spark SQL、MLlib、Streaming),并分析其在大规模数据处理、机器学习及实时流处理中的应用。通过代码示例展示DataFrame操作,帮助读者准备面试,同时强调结合个人经验、行业趋势和技术发展以展现全面的技术实力。
546 0
|
6月前
|
机器学习/深度学习 SQL 分布式计算
Apache Spark 的基本概念和在大数据分析中的应用
介绍 Apache Spark 的基本概念和在大数据分析中的应用
255 0
|
6月前
|
机器学习/深度学习 SQL 分布式计算
介绍 Apache Spark 的基本概念和在大数据分析中的应用。
介绍 Apache Spark 的基本概念和在大数据分析中的应用。
|
3月前
|
SQL 分布式计算 DataWorks
DataWorks产品使用合集之如何开发ODPS Spark任务
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
3月前
|
分布式计算 大数据 数据处理
Apache Spark的应用与优势:解锁大数据处理的无限潜能
【8月更文挑战第23天】Apache Spark以其卓越的性能、易用性、通用性、弹性与可扩展性以及丰富的生态系统,在大数据处理领域展现出了强大的竞争力和广泛的应用前景。随着大数据技术的不断发展和普及,Spark必将成为企业实现数字化转型和业务创新的重要工具。未来,我们有理由相信,Spark将继续引领大数据处理技术的发展潮流,为企业创造更大的价值。
|
3月前
|
分布式计算 资源调度 测试技术
“Spark Streaming异常处理秘籍:揭秘如何驯服实时数据流的猛兽,守护你的应用稳如泰山,不容错过!”
【8月更文挑战第7天】Spark Streaming 是 Apache Spark 中的关键组件,用于实时数据流处理。部署时可能遭遇数据问题、资源限制或逻辑错误等异常。合理处理这些异常对于保持应用稳定性至关重要。基础在于理解其异常处理机制,通过 DSC 将数据流切分为 RDD。对于数据异常,可采用 try-catch 结构捕获并处理;资源层面异常需优化 Spark 配置,如调整内存分配;逻辑异常则需加强单元测试及集成测试。结合监控工具,可全面提升应用的健壮性和可靠性。
79 3
|
4月前
|
分布式计算 大数据 Spark
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
《Spark大数据处理:技术、应用与性能优化》深入浅出介绍Spark核心,涵盖部署、实战与性能调优,适合初学者。作者基于微软和IBM经验,解析Spark工作机制,探讨BDAS生态,提供实践案例,助力快速掌握。书中亦讨论性能优化策略。[PDF下载链接](https://zhangfeidezhu.com/?p=347)。![Spark Web UI](https://img-blog.csdnimg.cn/direct/16aaadbb4e13410f8cb2727c3786cc9e.png#pic_center)
150 1
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
|
3月前
|
分布式计算 Hadoop 大数据
大数据处理框架在零售业的应用:Apache Hadoop与Apache Spark
【8月更文挑战第20天】Apache Hadoop和Apache Spark为处理海量零售户数据提供了强大的支持
65 0
|
4月前
|
分布式计算 Hadoop Serverless
数据处理的艺术:EMR Serverless Spark实践及应用体验
阿里云EMR Serverless Spark是基于Spark的全托管大数据处理平台,融合云原生弹性与自动化,提供任务全生命周期管理,让数据工程师专注数据分析。它内置高性能Fusion Engine,性能比开源Spark提升200%,并有成本优化的Celeborn服务。支持计算存储分离、OSS-HDFS兼容、DLF元数据管理,实现一站式的开发体验和Serverless资源管理。适用于数据报表、科学项目等场景,简化开发与运维流程。用户可通过阿里云控制台快速配置和体验EMR Serverless Spark服务。