从 Spark Streaming 到 Apache Flink : 实时数据流在爱奇艺的演进

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: 本文将为大家介绍 Apache Flink 在爱奇艺的生产与实践过程。你可以借此了解到爱奇艺引入 Apache Flink 的背景与挑战,以及平台构建化流程。

作者:陈越晨

整理:刘河

本文将为大家介绍Apache Flink在爱奇艺的生产与实践过程。你可以借此了解到爱奇艺引入Apache Flink的背景与挑战,以及平台构建化流程。主要内容如下:

  1. 爱奇艺在实时计算方面的的演化和遇到的一些挑战
  2. 爱奇艺使用Flink的User Case
  3. 爱奇艺Flink平台化构建流程
  4. 爱奇艺在Flink上的改进
  5. 未来工作

爱奇艺简介

爱奇艺在2010年正式上线,于2018年3月份在纳斯达克上市。我们拥有规模庞大且高度活跃的用户基础,月活跃用户数5.65亿人,在在线视频领域名列第一。在移动端,爱奇艺月度总有效时长59.08亿小时,稳居中国APP榜第三名。

一、爱奇艺在实时计算方面的演化和遇到的一些挑战

1. 实时计算在爱奇艺的演化过程

实时计算是基于一些实时到达、速率不可控、到达次序独立不保证顺序、一经处理无法重放除非特意保存的无序时间序列的数据的在线计算。

因此,在实时计算中,会遇到数据乱序、数据延时、事件时间与处理时间不一致等问题。爱奇艺的峰值事件数达到1100万/秒,在正确性、容错、性能、延迟、吞吐量、扩展性等方面均遇到不小的挑战。

爱奇艺从2013年开始小规模使用storm,部署了3个独立集群。在2015年,开始引入Spark Streaming,部署在YARN上。在2016年,将Spark Streaming平台化,构建流计算平台,降低用户使用成本,之后流计算开始在爱奇艺大规模使用。在2017年,因为Spark Streaming的先天缺陷,引入Flink,部署在独立集群和YARN上。在2018年,构建Streaming SQL与实时分析平台,进一步降低用户使用门槛。

2. 从Spark Streaming到Apache Flink

爱奇艺主要使用的是Spark Streaming和Flink来进行流式计算。Spark Streaming的实现非常简单,通过微批次将实时数据拆成一个个批处理任务,通过批处理的方式完成各个子Batch。Spark Streaming的API也非常简单灵活,既可以用DStream的java/scala API,也可以使用SQL定义处理逻辑。但Spark Streaming受限于微批次处理模型,业务方需要完成一个真正意义上的实时计算会非常困难,比如基于数据事件时间、数据晚到后的处理,都得用户进行大量编程实现。爱奇艺这边大量使用Spark Streaming的场景往往都在于实时数据的采集落盘。

Apache Flink框架的实时计算模型是基于Dataflow Model实现的,完全支持Dataflow Model的四个问题:What,支持定义DAG图;Where:定义各类窗口(固定窗口、滑动窗口和Session窗口);When:支持灵活定义计算触发时间;How:支持丰富的Function定义数据更新模式。和Spark Streaming一样,Flink支持分层API,支持DataStream API,Process Function,SQL。Flink最大特点在于其实时计算的正确性保证:Exactly once,原生支持事件时间,支持延时数据处理。由于Flink本身基于原生数据流计算,可以达到毫秒级低延时。

在爱奇艺实测下来,相比Spark Streaming,Apache Flink在相近的吞吐量上,有更低的延时,更好的实时计算表述能力,原生实时事件时间、延时数据处理等。

二、在爱奇艺使用Flink的一些案例

下面通过三个Use Case来介绍一下,爱奇艺具体是怎么使用Flink的,包括海量数据实时ETL,实时风控,分布式调用链分析。

1. 海量数据实时ETL

在爱奇艺这边所有用户在端上的任何行为都会发一条日志到nginx服务器上,总量超过千万QPS。对于具体某个业务来说,他们后续做实时分析,只希望访问到业务自身的数据,于是这中间就涉及一个数据拆分的工作。

在引入Flink之前,最早的数据拆分逻辑是这样子的,在Ngnix机器上通过“tail -f /xxx/ngnix.log | grep "xxx"”的方式,配置了无数条这样的规则,将这些不同的数据按照不同的规则,打到不同的业务kafka中。但这样的规则随着业务线的规模的扩大,这个tail进程越来越多,逐渐遇到了服务器性能瓶颈。

于是,我们就有了这样一个设想,希望通过实时流计算将数据拆分到各个业务kafka。具体来说,就是Nginx上的全量数据,全量采集到一级Kafka,通过实时ETL程序,按需将数据采集到各个业务Kafka中。当时,爱奇艺主的实时流计算基本均是基于Spark Streaming的,但考虑到Spark Streaming延迟相对来说比较高,爱奇艺从这个case展开开始推进Apache Flink的应用。

海量数据实时ETL的具体实现,主要有以下几个步骤:

  1. 解码:各个端的投递日志格式不统一,需要首先将各个端的日志按照各种解码方式解析成规范化的格式,这边选用的是JSON
  2. 风控:实时拆分这边的数据都会过一下风控的规则,过滤掉很大一部分刷量日志。由于量级太高,如果将每条日志都过一下风控规则,延时会非常大。这边做了几个优化,首先,将用户数据通过DeviceID拆分,不同的DeviceID拆分到不同的task manager上,每个task manager用本地内存做一级缓存,将redis和flink部署在一起,用本地redis做二级缓存。最终的效果是,每秒redis访问降到了平均4k,实时拆分的P99延时小于500ms。
  3. 拆分:按照各个业务进行拆分
  4. 采样、再过滤:根据每个业务的拆分过程中根据用户的需求不同,有采样、再过滤等过程

2. 实时风控

防机器撞库盗号攻击是安全风控的一个常见需求,主要需求集中于事中和事后。在事中,进行超高频异常检测分析,过滤用户异常行为;在事后,生成IP和设备ID的黑名单,供各业务实时分析时进行防刷使用。

以下是两个使用Flink特性的案例:

  1. CEP:因为很多黑产用户是有固定的一些套路,比如刚注册的用户可能在短时间内会进行一两项操作,我们通过CEP模式匹配,过滤掉那些有固定套路的黑产行为
  2. 多窗口聚合:风控这边会有一些需求,它需要在不同的一些时间窗口,有些时间窗口要求比较苛刻,可能是需要在一秒内或亚秒内去看一下某个用户有多少次访问,然后对他进行计数,计数的结果超过某些阈值就判断他是异常用户。通过Flink低延时且支持多窗口的特点,进行超高频的异常检测,比如对同一个用户在1秒内的请求进行计数,超过某个阈值的话就会被识别成黑产。

3. 分布式追踪系统

分布式调用链追踪系统,即全链路监控,每个公司基本都会有。在一个微服务架构当中,服务间的调用关系错综复杂,往往很难排查问题,识别性能性能瓶颈,这时候就需要分布式调用链追踪系统了。

上图是一个调用链的追踪拓扑图,每个点是一个具体的一个应用,就是具体经过哪个应用,每条边是说明这个应用到下一个应用当中耗时了多久。

除了宏观分析外,业务还想去看具体某一条日志的分析,具体某一次调用它是哪里慢了,哪里快了?所以,调用链还有另外一个需求,就是对于具体某次调用,想看一下它的具体耗时。

系统简单架构如上图,上半部分偏重于埋点,下半部分偏于分析。埋点简单来讲,就是通过客户端SDK埋点以及Agent采集,将系统调用日志全部打到Kafka中,我们通过Flink对他们进行各类分析。对于统计类的分析,就是通过Flink计算存储到HBase当中,提供一些监控报警、调用链拓普查询等这种分析。针对这类需求,我们运用了Flink的多窗口聚合的特性,通过一分钟或者多分钟的窗口,从茫茫日志中寻找哪条是实际的调用链,构建APP各个应用的拓扑调用关系,第二级是基于第一级分析的一个结果,分析出那个拓普图按各个窗口、各个不同的边去算每条边的平均耗时的统计。除此之外,我们还将通过Flink将原始数据打到ES里面供用户直接去查询。

三、Flink平台化

1. 概览

接下来将主要介绍爱奇艺的大数据平台的构建。上图不限于Flink,是大数据平台的整体架构图。在爱奇艺,存储层基本是基于Hadoop生态的,比如像HDFS、HBase、Kudu等;计算层,使用YARN,支持MapReduce、Spark、Flink、Hive、Impala等这些引擎;数据开发层,主要是一些自研产品,批处理开发在爱奇艺有工作流开发,数据集成等。实时计算开发,有流计算开发、Streaming SQL、实时分析等平台工具可以使用。

接下来,我们将简单介绍爱奇艺实时计算与分析平台。

2. 实时计算平台

2.1 流任务平台

流任务平台是爱奇艺实时计算的底层平台,支持流任务的提交运行与管理。流任务平台支持YARN, Mesos, Flink独立集群等多种资源调度框架;支持Storm, Spark Streaming, Flink, Streaming SQL等计算任务的托管与运行。在功能上,我们支持用户直接打包程序上传部署流任务,也支持用户通过Streaming SQL工具编写SQL进行流计算开发。为了更好地对计算任务进行管理,流计算平台提供JAR包、函数管理,任务指标监控,以及资源审计功能。

2.2 Streaming SQL

无论对于Spark Streaming还是Flink来说,他们均有一个较好的SQL优化引擎,但均缺乏DDL、DML创建的语义。于是对于业务来说,均需要业务先编程定义Source以及Sink,才可以使用SQL进行后续开发。

因此,爱奇艺自研的Streaming SQL定义了一套DDL和DML语法。其中,我们定义了4种表:
流表:定义了输入源是什么?具体的解码方式是什么?系统支持Json的解码方式,也支持用户自定义解码函数。
维度表:主要是静态表,支持MySQL,主要是用于流表Join的。
临时表:和Hive的临时表类似,用户定义中间过程。
结果表:定义了具体输出的类型,输出的源是什么?怎么访问?这边的输出源支持,就是常见的比如Kafka、MySQL、Kudu、ES、Druid、HBase等这样一些分析型数据库。

为了更好地支持业务需求,StreamingSQL默认也支持IP库相关的预定义函数,也支持用户自定义函数。

上图是一个StreamingSQL的应用Case,将P99,P50耗时打印到Console中。

为了更好地支持业务使用Streaming SQL,StreamingSQL提供Web IDE,提供代码高亮、关键词提示、语法检查、代码调试等功能。

3. 实时分析平台

实时分析平台,是爱奇艺基于Druid构建的分钟级延时的实时分析平台,支持通过Web向导配置,完成超大规模实时数据多维度的分析,并生成分钟级延时的可视化报表。支持的功能有,接入实时数据进行OLAP分析;制作实时报警;生产实时数据接口,配置监控报警等。

产品优势:

  • 全向导配置:从实时数据到报表生成仅需向导配置即可
  • 计算存储透明:无需管理大数据处理任务与数据存储
  • 分钟级低延时: 从数据产生到报表展示只有1分钟延时
  • 秒级查询:亚秒级返回分析报表
  • 支持灵活变更需求:业务可灵活更改维度,重新上线即可生效

3.1 用户向导配置

实时分析平台,将整个分析流程抽象成数据接入,数据处理,模型配置和报表配置4个过程。其中,模型配置完全按照OLAP模型,要求实时数据符合星型模型,存在时间戳、指标、维度等字段。

3.2 数据处理配置

在数据处理层,实时分析平台提供向导配置页面,支持用户通过纯页面的方式就可以配置数据处理过程,这主要应对一些简单场景,针对部分连SQL都不熟悉的小白用户提供页面配置方案;初次之外,类似StreamingSQL,实时分析也提供用户自定义SQL方式定义数据处理过程。

四、Flink改进

在Flink平台化的时候,我们遇到了几个Flink的问题,分别对其进行了些改进。

1. 改进 - 优雅恢复checkpoint

第一个改进是关于checkpoint的优雅恢复。这个问题的出发点是,业务希望使用Spark Streaming可以通过代码控制从哪个checkpoint恢复,但对于Flink来讲,业务没法通过代码控制checkpoint恢复点,需要手动指定检查点去恢复checkpoint。于是,我们希望Flink可以像Spark Streaming一样,直接通过代码方式恢复checkpoint。

针对这个问题,我们修改源码,在Flink任务启动时,从实际的路径当中找到他最新的一个checkpoint,直接从那个checkpoint当中恢复,当然这个也是可以让用户选的,他如果还想用原生方式恢复也可以,但提供一个选项,它可以支持从最近的checkpoint恢复。

2. 改进 - Kafka Broker HA

第二个改进是关于Kafka Broker HA的一个问题,比如像Kafka Broker故障的时候,Kafka还可以正常工作,但Flink程序往往会挂掉。针对这个问题,我们处理了Flink在Kafka Broker退出之后的sockerTimeOutException,支持用户重试次数配置来解决这个问题。

五、Flink未来工作

最后,介绍一下爱奇艺在Apache Flink的未来工作。目前StreamingSQL还只支持Spark Streaming和Structured Streaming引擎,后续很快会支持Flink引擎,大幅降低业务的Flink开发成本。随着Flink任务规模不断变大,我们将重点提升Flink在爱奇艺的成熟度,完善监控报警,增加资源审计流程(目前还仅对Spark Streaming进行资源审计)。另外,我们要研究下Flink 1.6的一些新特性,尝试下Kafka 2.0,调研Exactly once方案;另外,我们将对Flink新版本进行一些尝试,推进批流统一。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
10天前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
286 33
The Past, Present and Future of Apache Flink
|
2月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
833 13
Apache Flink 2.0-preview released
|
2月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
89 3
|
2月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
80 1
|
2月前
|
数据挖掘 物联网 数据处理
深入探讨Apache Flink:实时数据流处理的强大框架
在数据驱动时代,企业需高效处理实时数据流。Apache Flink作为开源流处理框架,以其高性能和灵活性成为首选平台。本文详细介绍Flink的核心特性和应用场景,包括实时流处理、强大的状态管理、灵活的窗口机制及批处理兼容性。无论在实时数据分析、金融服务、物联网还是广告技术领域,Flink均展现出巨大潜力,是企业实时数据处理的理想选择。随着大数据需求增长,Flink将继续在数据处理领域发挥重要作用。
166 0
|
3月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
1月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1176 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
1月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
156 56
|
5月前
|
存储 监控 大数据
阿里云实时计算Flink在多行业的应用和实践
本文整理自 Flink Forward Asia 2023 中闭门会的分享。主要分享实时计算在各行业的应用实践,对回归实时计算的重点场景进行介绍以及企业如何使用实时计算技术,并且提供一些在技术架构上的参考建议。
865 7
阿里云实时计算Flink在多行业的应用和实践
|
4月前
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

推荐镜像

更多