开发者社区> 梦想橡皮擦> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

Python爬虫入门教程 55-100 python爬虫高级技术之验证码篇

简介: 验证码探究 如果你是一个数据挖掘爱好者,那么验证码是你避免不过去的一个天坑,和各种验证码斗争,必然是你成长的一条道路,接下来的几篇文章,我会尽量的找到各种验证码,并且去尝试解决掉它,中间有些技术甚至我都没有见过,来吧,一起Coding吧 数字+字母的验证码 我随便在百度图片搜索了一个验证码,如下 ...
+关注继续查看

验证码探究

如果你是一个数据挖掘爱好者,那么验证码是你避免不过去的一个天坑,和各种验证码斗争,必然是你成长的一条道路,接下来的几篇文章,我会尽量的找到各种验证码,并且去尝试解决掉它,中间有些技术甚至我都没有见过,来吧,一起Coding吧

数字+字母的验证码

我随便在百度图片搜索了一个验证码,如下
image

今天要做的是验证码识别中最简单的一种办法,采用pytesseract解决,它属于Python当中比较简单的OCR识别库

库的安装

使用pytesseract之前,你需要通过pip 安装一下对应的模块 ,需要两个

pytesseract库还有图像处理的pillow库了

pip install pytesseract
pip install pillow

如果你安装了这两个库之后,编写一个识别代码,一般情况下会报下面这个错误

pytesseract.pytesseract.TesseractNotFoundError: tesseract is not installed or it's not in your path

这是由于你还缺少一部分内容

安装一个Tesseract-OCR软件。这个软件是由Google维护的开源的OCR软件。

下载地址 > https://github.com/tesseract-ocr/tesseract/wiki

中文包的下载地址 > https://github.com/tesseract-ocr/tessdata

选择你需要的版本进行下载即可

pillow库的基本操作

命令 释义
open() 打开一个图片
from PIL import Image
im = Image.open("1.png")
im.show()
save() 保存文件
convert() convert() 是图像实例对象的一个方法,接受一个 mode 参数,用以指定一种色彩模式,mode 的取值可以是如下几种:
· 1 (1-bit pixels, black and white, stored with one pixel per byte)
· L (8-bit pixels, black and white)
· P (8-bit pixels, mapped to any other mode using a colour palette)
· RGB (3x8-bit pixels, true colour)
· RGBA (4x8-bit pixels, true colour with transparency mask)
· CMYK (4x8-bit pixels, colour separation)
· YCbCr (3x8-bit pixels, colour video format)
· I (32-bit signed integer pixels)
· F (32-bit floating point pixels)

Filter

from PIL import Image, ImageFilter 
im = Image.open(‘1.png’) 
# 高斯模糊 
im.filter(ImageFilter.GaussianBlur) 
# 普通模糊 
im.filter(ImageFilter.BLUR) 
# 边缘增强 
im.filter(ImageFilter.EDGE_ENHANCE) 
# 找到边缘 
im.filter(ImageFilter.FIND_EDGES) 
# 浮雕 
im.filter(ImageFilter.EMBOSS) 
# 轮廓 
im.filter(ImageFilter.CONTOUR) 
# 锐化 
im.filter(ImageFilter.SHARPEN) 
# 平滑 
im.filter(ImageFilter.SMOOTH) 
# 细节 
im.filter(ImageFilter.DETAIL)

Format

format属性定义了图像的格式,如果图像不是从文件打开的,那么该属性值为None;
size属性是一个tuple,表示图像的宽和高(单位为像素);
mode属性为表示图像的模式,常用的模式为:L为灰度图,RGB为真彩色,CMYK为pre-press图像。如果文件不能打开,则抛出IOError异常。

这个地方可以参照一篇博客,写的不错 > https://www.cnblogs.com/mapu/p/8341108.html

验证码识别

注意安装完毕,如果还是报错,请找到模块 pytesseract.py 这个文件,对这个文件进行编辑

一般这个文件在 C:\Program Files\Python36\Lib\site-packages\pytesseract\pytesseract.py 位置

文件中 tesseract_cmd = 'tesseract' 改为自己的地址
例如: tesseract_cmd = 'C:\Program Files (x86)\Tesseract-OCR\tesseract.exe' 

如果报下面的BUG,请注意

Error opening data file \Program Files (x86)\Tesseract-OCR\tessdata/chi_sim.traineddata Please make sure the TESSDATA_PREFIX environment variable

解决办法也比较容易,按照它的提示,表示缺失了 TESSDATA_PREFIX 这个环境变量。你只需要在系统环境变量中添加一条即可

将 TESSDATA_PREFIX=C:Program Files (x86)Tesseract-OCR 添加环境变量

重启IDE或者重新CMD,然后继续运行代码,这个地方注意需要用管理员运行你的py脚本

步骤分为

  1. 打开图片 Image.open()
  2. pytesseract识别图片
import pytesseract
from PIL import Image

def main():
    image = Image.open("1.jpg")
 
    text = pytesseract.image_to_string(image,lang="chi_sim")
    print(text)

if __name__ == '__main__':
    main()

测试英文,数字什么的基本没有问题,中文简直惨不忍睹。空白比较大的可以识别出来。唉~不好用
当然刚才那个7364 十分轻松的就识别出来了。

带干扰的验证码识别

接下来识别如下的验证码,我们首先依旧先尝试一下。运行代码发现没有任何显示。接下来需要对这个图片进行处理
image

基本原理都是完全一样的

  1. 彩色转灰度
  2. 灰度转二值
  3. 二值图像识别

彩色转灰度

im = im.convert('L')  

灰度转二值,解决方案比较成套路,采用阈值分割法,threshold为分割点

def initTable(threshold=140):
    table = []
    for i in range(256):
        if i < threshold:
            table.append(0)
        else:
            table.append(1)
    return table

调用

binaryImage = im.point(initTable(), '1')
binaryImage.show()

调整之后
image

我们还需要对干扰线进行处理。在往下研究去,是图片深入处理的任务,对付小网站的简单验证码,这个办法足够了,本篇博文OVER,下一篇我们继续研究验证码。

参考链接

tesserocr GitHub:https://github.com/sirfz/tesserocr
tesserocr PyPI:https://pypi.python.org/pypi/tesserocr
pytesserocr GitHub:https://github.com/madmaze/pytesseract
pytesserocr PyPI:https://pypi.org/project/pytesseract/
tesseract下载地址:http://digi.bib.uni-mannheim.de/tesseract
tesseract GitHub:https://github.com/tesseract-ocr/tesseract
tesseract 语言包:https://github.com/tesseract-ocr/tessdata
tesseract文档:https://github.com/tesseract-ocr/tesseract/wiki/Documentation

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
「Python」爬虫-7.验证码的识别
> 本文主要介绍如何处理一些网页中简单的验证码问题。~~(只提供简单的思路,随着技术的发展,一些验证码已经防范的非常好了,一般的解决方法可能过不了验证码这一关🤺~~
0 0
爬虫,遇到aspx动态加载的验证码怎么办?
爬虫,遇到aspx动态加载的验证码怎么办?
0 0
14、web爬虫讲解2—Scrapy框架爬虫—豆瓣登录与利用打码接口实现自动识别验证码
打码接口文件 # -*- coding: cp936 -*- import sys import os from ctypes import * # 下载接口放目录 http://www.
769 0
Python爬虫入门教程 59-100 python爬虫高级技术之验证码篇5-极验证识别技术之二
@[toc] 图片比对 昨天的博客已经将图片存储到了本地,今天要做的第一件事情,就是需要在两张图片中进行比对,将图片缺口定位出来 缺口图片 完整图片 计算缺口坐标 对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离 def get_distance(self,cut_image,full_image): # print(cut_image.
109779 0
Python爬虫入门教程 58-100 python爬虫高级技术之验证码篇4-极验证识别技术之一
验证码类型 今天要搞定的验证码属于现在使用非常多的验证码的一种类型---极验证滑动验证码,关于这个验证码的详细说明查阅他的官网,https://www.geetest.com/ 把验证码做到这个地步,必须点赞了。
1205 0
Python爬虫入门教程 57-100 python爬虫高级技术之验证码篇3-滑动验证码识别技术
滑动验证码介绍 本篇博客涉及到的验证码为滑动验证码,不同于极验证,本验证码难度略低,需要的将滑块拖动到矩形区域右侧即可完成。 这类验证码不常见了,官方介绍地址为:https://promotion.
2792 0
Python爬虫入门教程 56-100 python爬虫高级技术之验证码篇2-开放平台OCR技术
今日的验证码之旅 今天你要学习的验证码采用通过第三方AI平台开放的OCR接口实现,OCR文字识别技术目前已经比较成熟了,而且第三方比较多,今天采用的是百度的。 注册百度AI平台 官方网址:http://ai.
1038 0
+关注
梦想橡皮擦
专栏100例写作模式先行者
文章
问答
来源圈子
更多
+ 订阅
文章排行榜
最热
最新
相关电子书
更多
Python第五讲——关于爬虫如何做js逆向的思路
立即下载
给运维工程师的Python实战课
立即下载
Python 系列直播——深入Python与日志服务,玩转大规模数据分析处理实战第二讲
立即下载