Python爬虫入门教程 55-100 python爬虫高级技术之验证码篇-阿里云开发者社区

开发者社区> 梦想橡皮擦> 正文

Python爬虫入门教程 55-100 python爬虫高级技术之验证码篇

简介: 验证码探究 如果你是一个数据挖掘爱好者,那么验证码是你避免不过去的一个天坑,和各种验证码斗争,必然是你成长的一条道路,接下来的几篇文章,我会尽量的找到各种验证码,并且去尝试解决掉它,中间有些技术甚至我都没有见过,来吧,一起Coding吧 数字+字母的验证码 我随便在百度图片搜索了一个验证码,如下 ...
+关注继续查看

验证码探究

如果你是一个数据挖掘爱好者,那么验证码是你避免不过去的一个天坑,和各种验证码斗争,必然是你成长的一条道路,接下来的几篇文章,我会尽量的找到各种验证码,并且去尝试解决掉它,中间有些技术甚至我都没有见过,来吧,一起Coding吧

数字+字母的验证码

我随便在百度图片搜索了一个验证码,如下
image

今天要做的是验证码识别中最简单的一种办法,采用pytesseract解决,它属于Python当中比较简单的OCR识别库

库的安装

使用pytesseract之前,你需要通过pip 安装一下对应的模块 ,需要两个

pytesseract库还有图像处理的pillow库了

pip install pytesseract
pip install pillow

如果你安装了这两个库之后,编写一个识别代码,一般情况下会报下面这个错误

pytesseract.pytesseract.TesseractNotFoundError: tesseract is not installed or it's not in your path

这是由于你还缺少一部分内容

安装一个Tesseract-OCR软件。这个软件是由Google维护的开源的OCR软件。

下载地址 > https://github.com/tesseract-ocr/tesseract/wiki

中文包的下载地址 > https://github.com/tesseract-ocr/tessdata

选择你需要的版本进行下载即可

pillow库的基本操作

命令 释义
open() 打开一个图片
from PIL import Image
im = Image.open("1.png")
im.show()
save() 保存文件
convert() convert() 是图像实例对象的一个方法,接受一个 mode 参数,用以指定一种色彩模式,mode 的取值可以是如下几种:
· 1 (1-bit pixels, black and white, stored with one pixel per byte)
· L (8-bit pixels, black and white)
· P (8-bit pixels, mapped to any other mode using a colour palette)
· RGB (3x8-bit pixels, true colour)
· RGBA (4x8-bit pixels, true colour with transparency mask)
· CMYK (4x8-bit pixels, colour separation)
· YCbCr (3x8-bit pixels, colour video format)
· I (32-bit signed integer pixels)
· F (32-bit floating point pixels)

Filter

from PIL import Image, ImageFilter 
im = Image.open(‘1.png’) 
# 高斯模糊 
im.filter(ImageFilter.GaussianBlur) 
# 普通模糊 
im.filter(ImageFilter.BLUR) 
# 边缘增强 
im.filter(ImageFilter.EDGE_ENHANCE) 
# 找到边缘 
im.filter(ImageFilter.FIND_EDGES) 
# 浮雕 
im.filter(ImageFilter.EMBOSS) 
# 轮廓 
im.filter(ImageFilter.CONTOUR) 
# 锐化 
im.filter(ImageFilter.SHARPEN) 
# 平滑 
im.filter(ImageFilter.SMOOTH) 
# 细节 
im.filter(ImageFilter.DETAIL)

Format

format属性定义了图像的格式,如果图像不是从文件打开的,那么该属性值为None;
size属性是一个tuple,表示图像的宽和高(单位为像素);
mode属性为表示图像的模式,常用的模式为:L为灰度图,RGB为真彩色,CMYK为pre-press图像。如果文件不能打开,则抛出IOError异常。

这个地方可以参照一篇博客,写的不错 > https://www.cnblogs.com/mapu/p/8341108.html

验证码识别

注意安装完毕,如果还是报错,请找到模块 pytesseract.py 这个文件,对这个文件进行编辑

一般这个文件在 C:\Program Files\Python36\Lib\site-packages\pytesseract\pytesseract.py 位置

文件中 tesseract_cmd = 'tesseract' 改为自己的地址
例如: tesseract_cmd = 'C:\Program Files (x86)\Tesseract-OCR\tesseract.exe' 

如果报下面的BUG,请注意

Error opening data file \Program Files (x86)\Tesseract-OCR\tessdata/chi_sim.traineddata Please make sure the TESSDATA_PREFIX environment variable

解决办法也比较容易,按照它的提示,表示缺失了 TESSDATA_PREFIX 这个环境变量。你只需要在系统环境变量中添加一条即可

将 TESSDATA_PREFIX=C:Program Files (x86)Tesseract-OCR 添加环境变量

重启IDE或者重新CMD,然后继续运行代码,这个地方注意需要用管理员运行你的py脚本

步骤分为

  1. 打开图片 Image.open()
  2. pytesseract识别图片
import pytesseract
from PIL import Image

def main():
    image = Image.open("1.jpg")
 
    text = pytesseract.image_to_string(image,lang="chi_sim")
    print(text)

if __name__ == '__main__':
    main()

测试英文,数字什么的基本没有问题,中文简直惨不忍睹。空白比较大的可以识别出来。唉~不好用
当然刚才那个7364 十分轻松的就识别出来了。

带干扰的验证码识别

接下来识别如下的验证码,我们首先依旧先尝试一下。运行代码发现没有任何显示。接下来需要对这个图片进行处理
image

基本原理都是完全一样的

  1. 彩色转灰度
  2. 灰度转二值
  3. 二值图像识别

彩色转灰度

im = im.convert('L')  

灰度转二值,解决方案比较成套路,采用阈值分割法,threshold为分割点

def initTable(threshold=140):
    table = []
    for i in range(256):
        if i < threshold:
            table.append(0)
        else:
            table.append(1)
    return table

调用

binaryImage = im.point(initTable(), '1')
binaryImage.show()

调整之后
image

我们还需要对干扰线进行处理。在往下研究去,是图片深入处理的任务,对付小网站的简单验证码,这个办法足够了,本篇博文OVER,下一篇我们继续研究验证码。

参考链接

tesserocr GitHub:https://github.com/sirfz/tesserocr
tesserocr PyPI:https://pypi.python.org/pypi/tesserocr
pytesserocr GitHub:https://github.com/madmaze/pytesseract
pytesserocr PyPI:https://pypi.org/project/pytesseract/
tesseract下载地址:http://digi.bib.uni-mannheim.de/tesseract
tesseract GitHub:https://github.com/tesseract-ocr/tesseract
tesseract 语言包:https://github.com/tesseract-ocr/tessdata
tesseract文档:https://github.com/tesseract-ocr/tesseract/wiki/Documentation

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
Python爬虫入门教程 31-100 36氪(36kr)数据抓取 scrapy
1. 36氪(36kr)数据----写在前面 今天抓取一个新闻媒体,36kr的文章内容,也是为后面的数据分析做相应的准备的,预计在12月底,爬虫大概写到50篇案例的时刻,将会迎来一个新的内容,系统的数据分析博文,记得关注哦~ 36kr 让一部分人先看到未来,而你今天要做的事情确实要抓取它的过去。
9251 0
分享录制的正则表达式入门、高阶以及使用 .NET 实现网络爬虫视频教程
我发布的「正则表达式入门以及高阶教程」,欢迎学习。 课程简介 正则表达式是软件开发必须掌握的一门语言,掌握后才能很好地理解到它的威力; 课程采用概念和实验操作 4/6 分隔,帮助大家理解概念后再使用大量的实例加深对概念的理解; 实例操作是对概念最好的理解,也是学习新语言最有效的办法; 在课程中也穿插着大量软件开发的技巧和大家分享; 应该是把晦涩的正则表达式讲解的最生动的课程; 掌握了正则表达式后,您一定会觉得这是一门最值得掌握的语言。
887 0
Apache Flink 零基础入门教程(六):状态管理及容错机制
本文主要分享内容如下: - 状态管理的基本概念; - 状态的类型与使用示例; - 容错机制与故障恢复;
979 0
+关注
梦想橡皮擦
专栏100例写作模式先行者
63
文章
1
问答
来源圈子
更多
+ 订阅
文章排行榜
最热
最新
相关电子书
更多
文娱运维技术
立即下载
《SaaS模式云原生数据仓库应用场景实践》
立即下载
《看见新力量:二》电子书
立即下载