Java线程安全面试题,你真的了解吗?-阿里云开发者社区

开发者社区> 大数据> 正文
登录阅读全文

Java线程安全面试题,你真的了解吗?

简介: 多个线程不管以何种方式访问某个类,并且在主调代码中不需要进行同步,都能表现正确的行为。 线程安全有以下几种实现方式: 不可变不可变(Immutable)的对象一定是线程安全的,不需要再采取任何的线程安全保障措施。

多个线程不管以何种方式访问某个类,并且在主调代码中不需要进行同步,都能表现正确的行为。

线程安全有以下几种实现方式:

不可变
不可变(Immutable)的对象一定是线程安全的,不需要再采取任何的线程安全保障措施。只要一个不可变的对象被正确地构建出来,永远也不会看到它在多个线程之中处于不一致的状态。多线程环境下,应当尽量使对象成为不可变,来满足线程安全。

不可变的类型:

final 关键字修饰的基本数据类型
String
枚举类型
Number 部分子类,如 Long 和 Double 等数值包装类型,BigInteger 和 BigDecimal 等大数据类型。但同为 Number 的原子类 AtomicInteger 和 AtomicLong 则是可变的。
对于集合类型,可以使用 Collections.unmodifiableXXX() 方法来获取一个不可变的集合。

public class ImmutableExample {

public static void main(String[] args) {
    Map<String, Integer> map = new HashMap<>();
    Map<String, Integer> unmodifiableMap = Collections.unmodifiableMap(map);
    unmodifiableMap.put("a", 1);
}

}
Exception in thread "main" java.lang.UnsupportedOperationException

at java.util.Collections$UnmodifiableMap.put(Collections.java:1457)
at ImmutableExample.main(ImmutableExample.java:9)

Collections.unmodifiableXXX() 先对原始的集合进行拷贝,需要对集合进行修改的方法都直接抛出异常。

public V put(K key, V value) {

throw new UnsupportedOperationException();

}
互斥同步
synchronized 和 ReentrantLock。

非阻塞同步
互斥同步最主要的问题就是线程阻塞和唤醒所带来的性能问题,因此这种同步也称为阻塞同步。

互斥同步属于一种悲观的并发策略,总是认为只要不去做正确的同步措施,那就肯定会出现问题。无论共享数据是否真的会出现竞争,它都要进行加锁(这里讨论的是概念模型,实际上虚拟机会优化掉很大一部分不必要的加锁)、用户态核心态转换、维护锁计数器和检查是否有被阻塞的线程需要唤醒等操作。

  1. CAS
    随着硬件指令集的发展,我们可以使用基于冲突检测的乐观并发策略:先进行操作,如果没有其它线程争用共享数据,那操作就成功了,否则采取补偿措施(不断地重试,直到成功为止)。这种乐观的并发策略的许多实现都不需要将线程阻塞,因此这种同步操作称为非阻塞同步。

乐观锁需要操作和冲突检测这两个步骤具备原子性,这里就不能再使用互斥同步来保证了,只能靠硬件来完成。硬件支持的原子性操作最典型的是:比较并交换(Compare-and-Swap,CAS)。CAS 指令需要有 3 个操作数,分别是内存地址 V、旧的预期值 A 和新值 B。当执行操作时,只有当 V 的值等于 A,才将 V 的值更新为 B。

  1. AtomicInteger
    J.U.C 包里面的整数原子类 AtomicInteger 的方法调用了 Unsafe 类的 CAS 操作。

以下代码使用了 AtomicInteger 执行了自增的操作。

private AtomicInteger cnt = new AtomicInteger();

public void add() {

cnt.incrementAndGet();

}
以下代码是 incrementAndGet() 的源码,它调用了 Unsafe 的 getAndAddInt() 。

public final int incrementAndGet() {

return unsafe.getAndAddInt(this, valueOffset, 1) + 1;

}
以下代码是 getAndAddInt() 源码,var1 指示对象内存地址,var2 指示该字段相对对象内存地址的偏移,var4 指示操作需要加的数值,这里为 1。通过 getIntVolatile(var1, var2) 得到旧的预期值,通过调用 compareAndSwapInt() 来进行 CAS 比较,如果该字段内存地址中的值等于 var5,那么就更新内存地址为 var1+var2 的变量为 var5+var4。

可以看到 getAndAddInt() 在一个循环中进行,发生冲突的做法是不断的进行重试。

public final int getAndAddInt(Object var1, long var2, int var4) {

int var5;
do {
    var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));

return var5;

}

  1. ABA
    如果一个变量初次读取的时候是 A 值,它的值被改成了 B,后来又被改回为 A,那 CAS 操作就会误认为它从来没有被改变过。

J.U.C 包提供了一个带有标记的原子引用类 AtomicStampedReference 来解决这个问题,它可以通过控制变量值的版本来保证 CAS 的正确性。大部分情况下 ABA 问题不会影响程序并发的正确性,如果需要解决 ABA 问题,改用传统的互斥同步可能会比原子类更高效。

无同步方案
要保证线程安全,并不是一定就要进行同步。如果一个方法本来就不涉及共享数据,那它自然就无须任何同步措施去保证正确性。

  1. 栈封闭
    多个线程访问同一个方法的局部变量时,不会出现线程安全问题,因为局部变量存储在虚拟机栈中,属于线程私有的。

public class StackClosedExample {

public void add100() {
    int cnt = 0;
    for (int i = 0; i < 100; i++) {
        cnt++;
    }
    System.out.println(cnt);
}

}
public static void main(String[] args) {

StackClosedExample example = new StackClosedExample();
ExecutorService executorService = Executors.newCachedThreadPool();
executorService.execute(() -> example.add100());
executorService.execute(() -> example.add100());
executorService.shutdown();

}
100
100

  1. 线程本地存储(Thread Local Storage)
    如果一段代码中所需要的数据必须与其他代码共享,那就看看这些共享数据的代码是否能保证在同一个线程中执行。如果能保证,我们就可以把共享数据的可见范围限制在同一个线程之内,这样,无须同步也能保证线程之间不出现数据争用的问题。

符合这种特点的应用并不少见,大部分使用消费队列的架构模式(如“生产者-消费者”模式)都会将产品的消费过程尽量在一个线程中消费完。其中最重要的一个应用实例就是经典 Web 交互模型中的“一个请求对应一个服务器线程”(Thread-per-Request)的处理方式,这种处理方式的广泛应用使得很多 Web 服务端应用都可以使用线程本地存储来解决线程安全问题。

可以使用 java.lang.ThreadLocal 类来实现线程本地存储功能。

对于以下代码,thread1 中设置 threadLocal 为 1,而 thread2 设置 threadLocal 为 2。过了一段时间之后,thread1 读取 threadLocal 依然是 1,不受 thread2 的影响。

public class ThreadLocalExample {

public static void main(String[] args) {
    ThreadLocal threadLocal = new ThreadLocal();
    Thread thread1 = new Thread(() -> {
        threadLocal.set(1);
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(threadLocal.get());
        threadLocal.remove();
    });
    Thread thread2 = new Thread(() -> {
        threadLocal.set(2);
        threadLocal.remove();
    });
    thread1.start();
    thread2.start();
}

}
1
为了理解 ThreadLocal,先看以下代码:

public class ThreadLocalExample1 {

public static void main(String[] args) {
    ThreadLocal threadLocal1 = new ThreadLocal();
    ThreadLocal threadLocal2 = new ThreadLocal();
    Thread thread1 = new Thread(() -> {
        threadLocal1.set(1);
        threadLocal2.set(1);
    });
    Thread thread2 = new Thread(() -> {
        threadLocal1.set(2);
        threadLocal2.set(2);
    });
    thread1.start();
    thread2.start();
}

}
它所对应的底层结构图为:

每个 Thread 都有一个 ThreadLocal.ThreadLocalMap 对象。

/* ThreadLocal values pertaining to this thread. This map is maintained

  • by the ThreadLocal class. */
    ThreadLocal.ThreadLocalMap threadLocals = null;

当调用一个 ThreadLocal 的 set(T value) 方法时,先得到当前线程的 ThreadLocalMap 对象,然后将 ThreadLocal->value 键值对插入到该 Map 中。

public void set(T value) {

Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
    map.set(this, value);
else
    createMap(t, value);

}
get() 方法类似。

public T get() {

Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
    ThreadLocalMap.Entry e = map.getEntry(this);
    if (e != null) {
        @SuppressWarnings("unchecked")
        T result = (T)e.value;
        return result;
    }
}
return setInitialValue();

}
ThreadLocal 从理论上讲并不是用来解决多线程并发问题的,因为根本不存在多线程竞争。

在一些场景 (尤其是使用线程池) 下,由于 ThreadLocal.ThreadLocalMap 的底层数据结构导致 ThreadLocal 有内存泄漏的情况,应该尽可能在每次使用 ThreadLocal 后手动调用 remove(),以避免出现 ThreadLocal 经典的内存泄漏甚至是造成自身业务混乱的风险。

  1. 可重入代码(Reentrant Code)
    这种代码也叫做纯代码(Pure Code),可以在代码执行的任何时刻中断它,转而去执行另外一段代码(包括递归调用它本身),而在控制权返回后,原来的程序不会出现任何错误。

可重入代码有一些共同的特征,例如不依赖存储在堆上的数据和公用的系统资源、用到的状态量都由参数中传入、不调用非可重入的方法等。

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
大数据
使用钉钉扫一扫加入圈子
+ 订阅

大数据计算实践乐园,近距离学习前沿技术

其他文章
最新文章
相关文章