【Spark Summit East 2017】Spark上基因组分析的算法和工具

简介: 本讲义出自Ryan Williams在Spark Summit East 2017上的演讲,主要介绍了Hammer构建于Spark上的几个基因数据分析工具以及使用RDDs进行一般性计算的库,并分享了其中最有趣的几个应用程序和算法:Guacamole、Pageant以及Magic RDDs。

更多精彩内容参见云栖社区大数据频道https://yq.aliyun.com/big-data;此外,通过Maxcompute及其配套产品,低廉的大数据分析仅需几步,详情访问https://www.aliyun.com/product/odps


本讲义出自Ryan Williams在Spark Summit East 2017上的演讲,主要介绍了Hammer构建于Spark上的几个基因数据分析工具以及使用RDDs进行一般性计算的库,并分享了其中最有趣的几个应用程序和算法:Guacamole、Pageant以及Magic RDDs。


d3b90fa615faca8bbb53a4ed2759fdc01c6793c5

f7319ea74588930974c1173cd33a2626a76452aa

3504b5dd6a40d41d92db353cabe24554d940b903

bf790ebee67b6a710d720b9dc034ea886185c4eb

b2f4748688e5fad83faebb69a6e188d631fdfd8a

34099b07412be4c562666392f877dd6126f74b2e

13dd499f6ee80b74f35e228dcf748465b386861c

e4ad698117d9d80508e049d26cc5ca8c5265ba39

135f799372baf34e201299e6ae359ec7fd3a7707

7211cf743b8bf69c07b67d1fcc0cd63a5fbb61c5

f135d93772ecf54688d8a8ef4708ee0e3c067b4e

025e13e4d151dc3add5e46067b3f36505768db8d

92ea24328d0a605bc30b9e35e6236f6ed6f10438

b73d58cb51a4bfdfb16f69a6bc87050ee815ffb2

48e5d80ad635e01c1d83ad76e7b7adcc381d57bb

ea6b697a6feb32d094ac1c0904e6d0ac7a4d50ad

e402e877c0f345d0f01337c009bfa09312107b47

1d86e1ec0020fc3cb017995ecff18952ecf167f6

470d992234e22168d47cef731fde530a14401e34

481371b0a70348498b5e58d77e2e2c9476ee3d29

4166ad3b7aea43d83a8c4c5ac6584b18b34034fb

60b11a8a01ae3fabc6c0f9e2c0a67f325d8ab230

334cb14e5b1b4a1177b50b9eb87a91f71e8247ca

5ed2f06086d2668bc926ea4cb93e0383acefda37

73b733e800f2fe51e478e9dbe930957b11b77a88

27ec601f6de6a9ed76730cb3311f17e35cbaf3a4

d5bb315c40dc6695405d02ea367e24580f9b7a17

相关文章
|
10月前
|
数据采集 机器学习/深度学习 算法
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
692 4
|
8月前
|
机器学习/深度学习 边缘计算 算法
NOMA和OFDMA优化算法分析
NOMA和OFDMA优化算法分析
407 127
|
5月前
|
运维 监控 JavaScript
基于 Node.js 图结构的局域网设备拓扑分析算法在局域网内监控软件中的应用研究
本文探讨图结构在局域网监控系统中的应用,通过Node.js实现设备拓扑建模、路径分析与故障定位,提升网络可视化、可追溯性与运维效率,结合模拟实验验证其高效性与准确性。
317 3
|
5月前
|
存储 边缘计算 算法
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
110 0
|
7月前
|
编解码 算法 5G
MIMO雷达空间谱估计中Capon算法与MUSIC算法的对比分析及实现
MIMO雷达空间谱估计中Capon算法与MUSIC算法的对比分析及实现
642 2
|
6月前
|
机器学习/深度学习 算法 5G
【MUSIC、最大似然与克拉美-罗下界】MUSIC与ESPRIT 算法来估计到达角(AoA),并尝试推导克拉美-罗下界(CRLB)以分析其性能研究(Matlab代码实现)
【MUSIC、最大似然与克拉美-罗下界】MUSIC与ESPRIT 算法来估计到达角(AoA),并尝试推导克拉美-罗下界(CRLB)以分析其性能研究(Matlab代码实现)
315 0
|
7月前
|
人工智能 自然语言处理 算法
2025 年 7 月境内深度合成服务算法备案情况分析报告
2025年7月,中央网信办发布第十二批深度合成算法备案信息,全国389款产品通过备案,服务提供者占比超七成。截至7月14日,全国累计备案达3834款,覆盖文本、图像、音视频等多模态场景,广泛应用于生活服务、医疗、金融等领域。广东以135款居首,数字人、AI客服等C端应用主导,民营企业成主力,国企聚焦公共服务。随着AI政策推动,备案已成为AI产品合规上线关键环节。
|
10月前
|
存储 监控 算法
员工行为监控软件中的 Go 语言哈希表算法:理论、实现与分析
当代企业管理体系中,员工行为监控软件已逐步成为维护企业信息安全、提升工作效能的关键工具。这类软件能够实时记录员工操作行为,为企业管理者提供数据驱动的决策依据。其核心支撑技术在于数据结构与算法的精妙运用。本文聚焦于 Go 语言中的哈希表算法,深入探究其在员工行为监控软件中的应用逻辑与实现机制。
245 14
|
11月前
|
自然语言处理 算法 安全
境内深度合成服务算法备案通过名单分析报告
本报告基于《境内深度合成服务算法备案通过名单》,分析了2023年6月至2025年3月公布的10批备案数据,涵盖属地分布、行业应用及产品形式等多个维度。报告显示,深度合成算法主要集中于经济发达地区,如北京、广东、上海等地,涉及教育、医疗、金融、娱乐等多行业。未来趋势显示技术将向多模态融合、行业定制化和安全合规方向发展。建议企业加强技术研发、拓展应用场景、关注政策动态,以在深度合成领域抢占先机。此分析旨在为企业提供参考,助力把握技术发展机遇。
境内深度合成服务算法备案通过名单分析报告
|
11月前
|
供应链 算法 搜索推荐
从公布的前十一批其他算法备案通过名单分析
2025年3月12日,国家网信办发布算法备案信息,深度合成算法通过395款,其他算法45款。前10次备案中,深度合成算法累计3234款,其他类别647款。个性化推送类占比49%,涵盖电商、资讯、视频推荐;检索过滤类占31.53%,用于搜索优化和内容安全;调度决策类占9.12%,集中在物流配送等;排序精选类占8.81%,生成合成类占1.55%。应用领域包括电商、社交媒体、物流、金融、医疗等,互联网科技企业主导,技术向垂直行业渗透,内容安全和多模态技术成新增长点。未来大模型检索和多模态生成或成重点。
从公布的前十一批其他算法备案通过名单分析